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0 DESCRIPTION OF THE FILES IN THE ARCHIVE

0 Description of the files in the archive

0.1 Structure of the archive

The zip file contains one folder called ECEinOnelab E 2021. In this folder you can
find the following subfolders:

• problemIndependent proFiles

This folder includes the formulations described in [CIS22] and [CIPL21]. We pre-
ferred to group the formulations in a single folder, and include them from here,
rather than making copies of the files in each problem folder. It is a template like
way of working. The files you find here are getdp files (.pro files) that are problem
independent. You should not modify the files here, expect for the case when you
know what you are doing.

• MatlabSources,

This folder includes some useful post-processing tools that you can call from Matlab.
Examples of using these tools are given below. You should not modify the files here,
expect for the case when you know what you are doing.

• docs

This folder includes this document two almost final drafts of the papers [CIS22] and
[CIPL21].

• Results log

This folder includes results that can be obtained with the provided examples, as
well as some useful matlab scripts for post-processing them. You should use the
information here as a reference, to check that you can obtain the same results with
the provided example files.

• Folders for each problem described, the number that you can see in the name sug-
gests the order in which you should investigate the files:
01 Ishape2D*, 02 Thshape2D*, 03 Ishape3D* and 04 LC*
are first descriptions of the test problems, 05 * is an example of how you can call
gmsh and getdp from matlab, and 06 LC* is a call from matlab including order
extraction based on the adaptive frequency sampling (AFS) described in [CILD12]
and Vector Fitting (VF) described in [GS99].

If you want to play with other geometries, we recommend that you add new problem
folders and call the formulations from the problemIndependent proFiles folder.

0.2 Formulations available

The following formulations are available in the problemIndependent proFiles folder:

1. Formulation for Full Wave (FW), ECE boundary conditions, in E inside the domain
and V on the boundary.

The core of this formulation, that includes only the function space and the equations
can be found in the file
only FunctionSpace and Formulation FullWave E ece.pro
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0.2 Formulations available 0 DESCRIPTION OF THE FILES IN THE ARCHIVE

It uses first order edge elements for E, first order nodal elements for V . The degrees
of freedom are the electric voltages along inner edges and nodal potentials on the
boundary;

This file is included by a general .pro file where the other objects are defined, which
are designed separately for the single input single output (SISO) case and for the
multiple input multiple output (MIMO) case - with 2 non-grounded terminals:

• FullWave E ece SISO Vinside.pro - here objects are described considering
that the problem has two terminals, one is grounded, the other can be voltage
or current excited. The frequency response will be saved in a Touchstone file
with the extension *.s1p.

• FullWave E ece MIMO2terminals.pro - here objects are described con-
sidering that the problem has three terminals, one is grounded, the other two
can be voltage or current excited. Only one of the non-grounded terminals
can be set as active, that is why the frequency response will be saved in a
Touchstone file with the extension *.s1p. But, all the obtained files can be
combined in a *.s2p. An example will be given in what follows.

2. Formulation for Full Wave (FW), ECE boundary conditions, in E inside the domain
and V inside and on the boundary.

The core of this formulation, that includes only the function space and the equations
can be found in the file
only FunctionSpace and Formulation FullWave E ece Vinside

This file is included by a general .pro file
FullWave E ece SISO Vinside.

This formulation was used only to check that the results obtained (frequency char-
acteristics) are the same as when V is used only on the boundary.

You should not use this formulation, unless you would like to do the same check.

3. Formulation for Full Wave (FW), classical boundary conditions, in E inside the
domain and on the boundary.

The core of this formulation, that includes only the function space and the equations
can be found in the file
only FunctionSpace and Formulation FullWave E classic.pro

It uses first order edge elements for E. The degrees of freedom are the electric
voltages along inner edges and edges on the boundary.

This file is included by a general .pro file
FullWave E classicBC.pro.

4. Formulation for Electrokinetics (EC), ECE boundary conditions, in V inside the
domain and on the boundary.

This is a steady state conduction, resistor type element, with 2 terminals: one is
grounded and the other can be either voltage excited or current excited. The surface
that does not belong to terminals has zero Neumann boundary condition.
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0.3 Matlab tools 0 DESCRIPTION OF THE FILES IN THE ARCHIVE

The core of this formulation, that includes only the function space and the equations
can be found in the file
only FunctionSpace and Formulation Electrokinetics V ece.pro

This file is included by a general .pro file
Electrokinetics V ece.pro.

This formulation was used for testing purposes only (correct implementation of
global quantities associated to parts of the boundary).

Some brief explanations can be found in Appendix D.

0.3 Matlab tools

The archive provides some matlab functions we have previously developed in other projects,
useful to do simple things such as compare frequency responses, change between frequency
file formats, or more interesting things such as sampling the frequency range in an adap-
tive way, embedded with a model reduction based on vector fitting. The source files are
in the folder MatlabSources.

Examples of how you can use them are given below.

0.4 Short description of the problems

Implementing ECE in onelab was for some of us a learning experience as well. In fact,
the ECE formulation means only several lines of code, that describe the function spaces
and the equations. The rest is only the ability to work in gmsh and getdp.

Here there is a short description of the files you can find in the archive. From the
point of view of a new user of onelab, each test brings something new.

1. Ishape2D

• 01 Ishape2D 1freq

2D problem (rectangle), boundary representation, SISO, solve for one fre-
quency, use of onelab GUI to look qualitatively at the fields (see color maps,
vector field representations).

• 01 Ishape2D ece s1p

The same problem as above, but solving for several imposed frequencies and
writing the frequency response in a Touchstone file (.s1p)
(https://en.wikipedia.org/wiki/Touchstone file).

• 01 Ishape2D ece s1p adaptedMesh

The same problem as above, but the mesh is conceived so that it takes into
consideration the skin depth at high frequencies.

2. Tshape2D

• 02 Tshape2D ece 1freq

2D problem, boundary representation, MIMO, two terminals not grounded,
various excitation possible (current, voltage, hybrid direct or reverse), solve for
one frequency, use of onelab GUI to look qualitatively at the fields (see color
maps, field lines).
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0.4 Problems 0 DESCRIPTION OF THE FILES IN THE ARCHIVE

• 02 Tshape2D ece s2p

Same as above, but solving for several frequencies, needed to generate a Touch-
stone file (.s2p).

3. Ishape3D

• 03 Ishape3D ece Brep 1freq

3D problem (cylinder), boundary representation, SISO, solve for one frequency,
use of onelab GUI to look qualitatively at the fields (see color maps, field
representations).

• 03 Ishape3D ece s1p OCC adaptedMesh

The same problem as above, use open cascade and a more appropriate mesh.
Solve for several frequencies and write a s1p file.

• 03axi Ishape2.5D ece s1p adaptedMesh

A 2D axisymmetric model for the Ishape3D problem, with a mesh adapted so
that it considers the skin depth.

4. LC

• 04 LC GeometryInStepFile ece s1p

A more complicated geometry, described in a step file. Solve for a list of
frequencies imposed by the user.

• 04 LC ParametricGeometryInGeoFile ece s1p

The LC test described in a parametric way, with another air box than the
previous case.

5. Calling gmsh and getdp from Matlab

This is a stand-alone folder, it contains a simple example (Ishape2D) – classical way
of working in the onelab GUI and call for Matlab. It the folder
05 SimpleExampleCallingOnelabFromMatlab there are two subfolders

• 01b Ishape2D ece s1p - classical way of working.

• 01b Ishape2D ece s1p callFromMatlab - call for Matlab in order to solve
the same problem.

6. Model reduction and parameter extraction

• 06 LC GeometryInStepFile ece s1p callFromMatlab AFS

The LC problem with the geometry in STEP format, build a reduced order
model with the vector fitting procedure while computing the frequency char-
acteristics with adaptive frequency sampling. It runs from Matlab, gmsh and
getdp are called with system calls.
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1 ISHAPE2D

1 Ishape2D

1.1 Model description and analytic solution

This is the test described in the [CIPL21] paper. The computational domain and the
placement of terminals is shown in Fig. 1. The following numerical data was used: a = 2.5
µm; l = 10 µm; h = 10 µm (for postprocessing and for current excited case); µ = 4π ·10−7

[H/m]; ε = 8.854187812812 · 10−12 F/m; σ = 6.6 · 107 [S/m].

Figure 1: Ishape2D test: Computational domain and placement of terminals.

This was a useful problem because in this case, the FW-ECE BC formulation is equiv-
alent (from the field point of view) to the FW-classical BC formulation, as follows:

Classical BC Equivalent ECE BC

Voltage y = 0, x ∈ [−a, a] Ex = 0 y = 0, x ∈ [−a, a], VT1 = voltage
excited type y = l, x ∈ [−a, a], Ex = 0 y = l, x ∈ [−a, a], VT2 = 0

x = −a, y ∈ [0, l], Ey = voltage/l x = −a, y ∈ [0, l], “natural ECE”
x = a, y ∈ [0, l], Ey = voltage/l x = a, y ∈ [0, l], “natural ECE”

Current y = 0, x ∈ [−a, a] Ex = 0 y = 0, x ∈ [−a, a], IT1 = current
excited type y = l, x ∈ [−a, a], Ex = 0 y = l, x ∈ [−a, a], VT2 = 0

x = −a, y ∈ [0, l], x = −a, y ∈ [0, l], “natural ECE”
n×Hz = current/(2h)j
x = a, y ∈ [0, l], x = a, y ∈ [0, l], “natural ECE”
n×Hz = −current/(2h)j

An analytic solution can be computed easily (see Appendix A). You can a evaluate and
visualize the analytic solution with the code main 2Drectangle.m that can be found
in the folder Results log/Ishape2Danalitic. You only need to change the sourcespath
and problempath, according to your settings (lines 8 and 9 at the beginning of the file).

1 % F i l e main 2Drectangle .m
2 % Analyt ic s o l u t i o n o f the vector Helmholtz equat ion in a r e c t ang l e
3 % Gabr ie la Ciuprina , February 4 , 2020
4 c l c ;
5 c l o s e a l l hidden
6 % prepare path to use chamy t o o l s
7 r e s t o r e d e f a u l t p a t h ;
8 sourcespath = genpath ( ’D:\ Gabr ie la\OneLab\mytests\ECEforOnelab\ECEinOnelab E 2021\MatlabSources\Chamy ’ )

;
9 problempath = ’D:\ Gabr ie la\OneLab\mytests\ECEforOnelab\ECEinOnelab E 2021\R e s u l t s l o g \01

I shape2Dana l i t i c ’ ;
10 addpath ( sourcespath ) ;
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1.2 01 Ishape2D 1freq 1 ISHAPE2D

11 addpath ( problempath ) ;
12 chd i r ( problempath ) ;

The frequency characteristic is written in a s1p (lines 60 and 62 below).
1 % F i l e r e c t ang l e ana l i t i c FW .m
2 func t i on r e c tang l e ana l i t i c FW (geom , mat , f req , f i l e s , i d x f i g )
3
4 a = geom . a ;
5 l = geom . l ;
6 h = geom . h ;
7 s i g = mat . s i g ;
8 miu = mat .mu;
9 f v e c t = f r e q . f v e c t ;

10 outpath = f i l e s . outpath ;
11 problempath = f i l e s . problempath ;
12 chd i r ( outpath ) ;
13 ep s i = mat . eps ;
14
15 %%
16 omega = 2∗ pi ∗ f v e c t ;
17 gamma cplx patrat = 1 i ∗omega∗miu . ∗ ( s i g + 1 i ∗omega∗ ep s i ) ;
18 gamma cplx = sqr t ( gamma cplx patrat ) ;
19 % r a d i c a l u l din nr complexe − cu g r i j a !
20
21 % I = 1 ( va loarea e f e c t i v a a cu r en tu lu i )
22
23 gamma a = gamma cplx∗a ;
24
25 P a p c p l x l i n e i c = ( l /(2∗h) ) ∗( gamma cplx . / ( s i g + 1 j ∗omega∗ ep s i ) ) . ∗ ( cosh (gamma a) . / s inh (gamma a) ) ;
26 R h = r e a l ( P a p c p l x l i n e i c ) ;
27 X h = imag ( P a p c p l x l i n e i c ) ;
28 L h = X h ./ omega ;
29
30 i d x f i g = i d x f i g +1;
31 f i g u r e ( i d x f i g ) ; c l f ;
32 l o g l o g ( fvect , R h , ’−−m’ , ’ Linewidth ’ ,2 ) ;
33 x l ab e l ( ’ f [ Hz ] ’ ) ;
34 y l ab e l ( ’R [\Omega ] ’ ) ;
35 t i t l e ( ’ Rez i s tance − from FW, a n a l y t i c ’ ) ;
36 g r id on ;
37 %ylim ( [ 4 e−3,1e−1]) ;
38 %xlim ( [ 1 e−1 ,100 e9 ] ) ;
39 p r in t ( s t r c a t ( ’ f i g ’ , num2str ( i d x f i g ) , ’ . jpg ’ ) , ’−djpeg ’ ) ;
40 p r in t ( s t r c a t ( ’ f i g ’ , num2str ( i d x f i g ) , ’ . eps ’ ) , ’−depsc ’ ) ;
41
42 i d x f i g = i d x f i g +1;
43 f i g u r e ( i d x f i g ) ; c l f ;
44 l o g l o g ( fvect , L h , ’−−k ’ , ’ Linewidth ’ ,2 ) ;
45
46 x l ab e l ( ’ f [ Hz ] ’ ) ;
47 y l ab e l ( ’L [H] ’ ) ;
48 t i t l e ( ’ Inductance − from FW, a n a l y t i c ’ ) ;
49 g r id on ;
50 %ylim ( [ 1 e−13 ,1e−12]) ;
51 p r in t ( s t r c a t ( ’ f i g ’ , num2str ( i d x f i g ) , ’ . jpg ’ ) , ’−djpeg ’ ) ;
52 p r in t ( s t r c a t ( ’ f i g ’ , num2str ( i d x f i g ) , ’ . eps ’ ) , ’−depsc ’ ) ;
53
54 Zfw = R h + 1 i .∗2∗ pi .∗ f v e c t .∗ L h ;
55 Yfw = 1./ Zfw ;
56
57
58 f i l ename = f i l e s . rootname ;
59 snpZ = s t r c a t ( f i l ename , ’Z . s1p ’ ) ;
60 wr i tesnp v2 ( snpZ , fvect , Zfw , ’Z ’ , ’Hz ’ , 50 , ’RI ’ ) ;
61 snpY = s t r c a t ( f i l ename , ’Y. s1p ’ ) ;
62 wr i tesnp v2 ( snpY , fvect , Yfw , ’Y ’ , ’Hz ’ , 50 , ’RI ’ ) ;
63 % snp2snp ( ’ ’ , snp f i l ename , ’Z ’ , ’RI ’ , snpZ ) ;
64 snp imag over omega ( ’ ’ , snpZ , ’ ’ ) ;
65 chd i r ( problempath ) ;
66
67
68 end

1.2 Test 01 Ishape2D 1freq: use of various formulations, solve
one frequency

In this example, you can “play” with all classical and ECE BC and see field maps.
The frequency, the geometrical and material parameters can be changed from the GUI.
The boundary conditions are by default computed so that they correspond either to a
voltage excitation with 1 V or to a current excitation with 1 A. The following figures (see
descriptions in captions) show typical maps you can see. Just launch onelab, load the
Ishape2d.pro file and run.

8



1.2 01 Ishape2D 1freq 1 ISHAPE2D

Figure 2: 01 Ishape2D 1freq: Use of FW with classical BC. Here Et was imposed
everywhere on the boundary. The map shows the real part of H, at 1e7 Hz.

Figure 3: 01 Ishape2D 1freq: Use of FW with ECE BC, voltage excitation. The field
is identical to the field in Fig. 2. This was a first validation of the correct implementation
of the ECE.
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1.2 01 Ishape2D 1freq 1 ISHAPE2D

Figure 4: 01 Ishape2D 1freq: Same test as in Fig. 3, V on the boundary is displayed.
The unknowns are strictly on the boundary in fact. Here an interpolation is carried out
near the boundary. The figure shows only the potential on the boundary which does not
include the terminals.

Figure 5: 01 Ishape2D 1freq: Same test as in Fig. 3, the E field is displayed (real part).
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1.3 01 Ishape2D ece s1p 1 ISHAPE2D

Figure 6: 01 Ishape2D 1freq: Same test as in Fig. 3, the E field is displayed (real part),
the frequency is changed to 1 GHz. You can see a strong skin depth effect.

1.3 Test 01 Ishape2D ece s1p: ECE formulation, solve several
frequencies, write s1p

In this example, only ECE BC were set. From the interface you can change the type of
excitation (voltage or current), as well as the frequency values to be computed. In the
Ishape2D data.pro file values are initially set for the minimum (fmin) and maximum
(fmax) frequencies as well as the number of frequency points (nop) that will be computed.
The frequencies are linearly distributed in the frequency range, as shown in the following
piece of code.

1 fmin = 1e7 ; // Hz
2 fmax = 100 e9 ; // Hz
3
4 nop = 20 ;
5 // f r e q s ( )= LogSpace [ Log10 [ fmin ] , Log10 [ fmax ] , nop ] ;
6 f r e q s ( )= LinSpace [ fmin , fmax , nop ] ;
7 Def ineConstant [
8 Freq = { f r e q s (0 ) , Choices{ f r e q s ( ) } , Loop , Name StrCat [ mValuesBC , ”0Working Frequency” ] ,
9 Units ”Hz” , H igh l i ght Str [ colorMValuesBC ] , Closed ! c lose menu }

10 ] ;

Just launch onelab, load the Ishape2d.pro file and run.
In order to save the transfer function, you have to chose as Postprocessing the “Trans-

ferMatrix” option (Fig. 7).
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1.3 01 Ishape2D ece s1p 1 ISHAPE2D

Figure 7: 01 Ishape2D ece s1p: In order to save the s1p file, you have to chose the
”TransferMatrix” postprocessing option.

In the case of a voltage excitation, a file called test Y RI.s1p will be saved in
the res/FWeceBC voltExc folder. In the case of a current excitation, a file called
test Z RI.s1p will be saved in the res/FWeceBC crtExc folder. If these files already
exists (e.g. from previous simulations), the new results will be appended to the old content
of the file.

For example, here it is the content of the test Y RI.s1p file obtained for the mesh
in Fig. 7 and the frequencies set as explained before.

# Hz Y RI R 50

10000000 329.9536433200924 -3.552568095219233

5272631578.947369 58.69178665402725 -53.5911706154402

10535263157.89474 43.96697262601042 -36.36720113258519

15797894736.84211 37.68298712699642 -28.55055279773523

21060526315.78947 34.22534693330498 -23.86618485322638

26323157894.73684 32.04127404414925 -20.70721540109225

31585789473.68421 30.54033939516463 -18.42748454051295

36848421052.63158 29.44460426052127 -16.70992144544824

42111052631.57895 28.60497574060061 -15.37627071292636

47373684210.52631 27.93469507011244 -14.31661594613089

52636315789.47369 27.38040869498801 -13.45869828223423

57898947368.42105 26.90796835573502 -12.75277512050838

63161578947.36842 26.49485036939355 -12.16341022001878

68424210526.31579 26.12584763395962 -11.66469038712076

73686842105.26315 25.79049974658071 -11.23727674697945

78949473684.21053 25.48149971513116 -10.86650262662929

84212105263.1579 25.19367498371496 -10.54110027623597

89474736842.10527 24.92331911237773 -10.25232204102804

94737368421.05263 24.66774434919038 -9.993318096548821

100000000000 24.42497705330639 -9.758686293920348

You can compare the obtained frequency response with a reference one (e.g. the ana-
lytic one in this case). Let’s assume that we placed (moved) the important results in a spe-
cific folder, e.g. Results log. For example, in Results log/Ishape2Danalitic vs onelab
you can find various results, and in each sub-folder you can see a main compare.m file,
which is a the matlab function allowing you to compare snp files (snpdiff). Let’s look in
this file:

1 % F i l e main compare .m
2 c l c ;
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1.3 01 Ishape2D ece s1p 1 ISHAPE2D

3 c l e a r a l l ;
4 c l o s e a l l hidden
5 % prepare path to use chamy without gui
6 r e s t o r e d e f a u l t p a t h ;
7 sourcespath = genpath ( ’D:\ Gabr ie la\OneLab\mytests\ECEforOnelab\ECEinOnelab E 2021\MatlabSources ’ ) ;
8 problempath = ’D:\ Gabr ie la\OneLab\mytests\ECEforOnelab\ECEinOnelab E 2021\R e s u l t s l o g \01

I s h a p e 2 D a n a l i t i c v s o n e l a b \ resu l t s9mar22 ’ ;
9 addpath ( sourcespath ) ;

10 addpath ( problempath ) ;
11 chd i r ( problempath ) ;
12
13 i f 1 == 1
14 % comparison o f Z f i l e s ( from c r t exc ) and computation o f L
15 snp ref pathname = ’ . . / . . / 0 1 I shape2Dana l i t i c / out ana l i t i c FW 100pc t f o rRe f e r ence / ’ ;
16 s n p r e f f i l e n a m e = ’ 2Drectangle xy FW Z . s1p ’ ;
17 snp an pathname{1} = ’ . / r e s /FWeceBC crtExc/ ’ ;
18 snp an f i l ename {1} = ’ te s t Z RI . s1p ’ ;
19 s n p d i f f ( s np r e f f i l e name , snp ref pathname , snp an f i l ename , snp an pathname ) ;
20 chd i r ( snp an pathname {1}) ;
21 snp imag over omega ( ’ ’ , snp an f i l ename {1} , ’ ’ ) ;
22 chd i r ( problempath ) ;
23 end
24
25
26 i f 1 == 0
27 % comparison o f Y f i l e s ( from vo l tage exc )
28 snp ref pathname = ’ . . / . . / 0 1 I shape2Dana l i t i c / out ana l i t i c FW 100pc t f o rRe f e r ence / ’ ;
29 s n p r e f f i l e n a m e = ’ 2Drectangle xy FW Y . s1p ’ ;
30 snp an pathname{1} = ’ . / r e s /FWeceBC voltExc/ ’ ;
31 snp an f i l ename {1} = ’ test Y RI . s1p ’ ;
32 s n p d i f f ( s np r e f f i l e name , snp ref pathname , snp an f i l ename , snp an pathname ) ;
33 end
34
35 i f 1 == 0
36 % comparison o f RL f i l e s
37 snp ref pathname = ’ . . / . . / 0 1 I shape2Dana l i t i c / out ana l i t i c FW 100pc t f o rRe f e r ence / ’ ;
38 s n p r e f f i l e n a m e = ’ 2 Drectangle xy FW Z imag over omega . s1p ’ ; % t h i s has to be computed , see the

f i r s t i f above
39 snp an pathname{1} = ’ . / r e s /FWeceBC crtExc/ ’ ;
40 snp an f i l ename {1} = ’ test Z RI imag over omega . s1p ’ ;
41 s n p d i f f ( s np r e f f i l e name , snp ref pathname , snp an f i l ename , snp an pathname ) ;
42
43 end
44
45 i f 1 == 0
46 % conve r s i ons to other formats
47 snp an pathname{1} = ’ . / r e s /FWeceBC crtExc/ ’ ;
48 snp an f i l ename {1} = ’ te s t Z RI . s1p ’ ;
49 chd i r ( snp an pathname {1}) ;
50 snp2snp ( ’ ’ , snp an f i l ename {1} , ’ S ’ , ’DB’ , s t r c a t ( snp an f i l ename {1} , ’ S DB . s1p ’ ) ) ;
51 snp2snp ( ’ ’ , snp an f i l ename {1} , ’ S ’ , ’MA’ , s t r c a t ( snp an f i l ename {1} , ’ S MA . s1p ’ ) ) ;
52 snp2snp ( ’ ’ , snp an f i l ename {1} , ’Z ’ , ’MA’ , s t r c a t ( snp an f i l ename {1} , ’ Z MA . s1p ’ ) ) ;
53 chd i r ( problempath ) ;
54
55
56 end

Lines 7 and 8 - set the paths to the codes, you have to change them. Lines 13, 26, 35,
45 are just flag type lines. For instance, as it is now, you can compare s1p files of Z type
(impedance). In this case another file is created, which is a s1p in which the imaginary
part was divided by the angular frequency ω (line 21), so it will contain the resistance
and the inductance. If you want to compare s1p files of Y type (admittance), then set to
true the condition at line 26. If you want to compare resistances and inductances, then
set to true the condition at line 35. If you want to do conversions to other types (S) or
representations (MA), then set to true the condition at line 45.

Alternatively (and maybe easier), if you have set the path to the matlab sources, you
can type at the Matlab console

snpdiff tool

which will open a short dialog, allowing you to select snp files. The first one you
select is the reference one, with respect to which a global error will be computed. This is
how figures such as the one in Fig. 8 can be obtained, which can be found in the folder
Results log/01 Ishape2Danalitic vs onelab/results9mar22

13



1.4 01 Ishape2D ece s1p adaptedMesh 1 ISHAPE2D

Figure 8: 01 Ishape2D ece s1p: Such figures are produced with the snpdiff function.
Of course, for a nicer representation you have to change the labels which are, by default,
the names of the files that have been chosen. In this case the first file chosen is the
reference - the blue curve, and the second file chosen is the numerical computation - the
red curve.

1.4 Test 01 Ishape2D ece s1p adaptedMesh: ECE formulation,
solve several frequencies, write s1p, with a mesh that con-
siders the eddy current effect

This test is similar to 01 Ishape2D ece s1p, but the mesh is built according to the skin
depth.

In the GUI you can set the number of elements per skin depth (Figs. 9 and Figs. 10),
and this affects the size of the mesh near the left and right boundary. The setting is done
in the Ishape2D.geo file (folder 01 Ishape2D ece s1p adaptedMesh), which is also
shown below (see lines 14,15, 44-61).

1 /∗ Ishape2d . geo
2 Geometr ical d e s c r i p t i o n ( f o r gmsh) o f Ishape2D t e s t f o r ECE
3 For d e t a i l s , s ee comments in the Ishape2d data . pro f i l e
4 Meshing in format ion i s a l s o de f ined here .
5 The mesh s i z e depends on the sk in depth .
6 ∗/
7
8
9 Inc lude ” Ishape2d data . pro” ;

10
11 /∗ D e f i n i t i o n o f parameters f o r l o c a l mesh dimensions ∗/
12 //p0 = s∗ l /10 ; // c h a r a c t e r i s t i c l ength o f mesh element
13 de l t a = Sqrt (2 . 0/ (2∗ Pi∗Freq∗mu∗ sigma ) ) ;
14 I f ( de l t a < a )
15 p0 = de l t a /nbDelta ;
16 Else
17 p0 = l /10/2;
18 EndIf
19
20 /∗ D e f i n i t i o n o f gemet r i ca l po in t s ∗/
21 Point (1) = { −a , 0 , 0 , p0} ;
22 Point (2) = { a , 0 , 0 , p0} ;
23 Point (3) = { a , l , 0 , p0} ;
24 Point (4) = { −a , l , 0 , p0} ;
25
26 /∗ D e f i n i t i o n o f gemet r i ca l l i n e s ∗/
27 Line (1) = {1 ,2} ;
28 Line (2) = {2 ,3} ;
29 Line (3) = {3 ,4} ;
30 Line (4) = {4 ,1} ;
31
32 /∗ D e f i n i t i o n o f geomet r i ca l s u r f a c e s ∗/
33 Line Loop (5) = {1 , 2 , 3 , 4} ;
34 Plane Sur face (6 ) = {5} ;
35
36 /∗ t h i s i s not used now
37 I f ( u s e t r a n s f i n i t e )
38 T r a n s f i n i t e Line {2 ,4} = 3∗ s ;
39 T r a n s f i n i t e Line {1 ,3} = 1∗ s ;
40 T r a n s f i n i t e Sur face {6} ;
41 EndIf
42 ∗/
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1.4 01 Ishape2D ece s1p adaptedMesh 1 ISHAPE2D

43
44 F ie ld [ 1 ] = Distance ;
45 F ie ld [ 1 ] . CurvesList = {2 ,4} ;
46 F i e ld [ 1 ] . Sampling = 50 ;
47 F ie ld [ 2 ] = Threshold ;
48 F ie ld [ 2 ] . InF i e ld = 1 ;
49 F ie ld [ 2 ] . SizeMin = p0 ;
50 F ie ld [ 2 ] . SizeMax = a /5 ;
51 F ie ld [ 2 ] . DistMin = 0 ;
52 F ie ld [ 2 ] . DistMax = 3∗ de l t a ;
53
54
55 F ie ld [ 3 ] = Min ;
56 F ie ld [ 3 ] . F i e l d s L i s t = {2} ;
57 Background Fie ld = 3 ;
58 Mesh . MeshSizeExtendFromBoundary = 0 ;
59 Mesh . MeshSizeFromPoints = 0 ;
60 Mesh . MeshSizeFromCurvature = 0 ;
61 Mesh . Algorithm = 5 ;
62
63 /∗ D e f i n i t i o n o f Phys i ca l e n t i t i e s ( su r f a c e s , l i n e s ) . The Phys i ca l
64 e n t i t i e s t e l l GMSH the elements and t h e i r a s s o c i a t ed reg ion numbers
65 to save in the f i l e ’ Ishape2d . msh ’ . ∗/
66
67 Phys i ca l Sur face ( ” MaterialX ” , 100) = {6} ; /∗ MaterialX ∗/
68
69 Phys i ca l Line ( ”Ground” , 120) = {3} ; /∗ Ground ∗/
70 Phys i ca l Line ( ”Terminal ” , 121) = {1} ; /∗ Terminal ∗/
71 Phys i ca l Line ( ”RightBoundary” , 131) = {2} ; /∗ RightBoundary ∗/
72 Phys i ca l Line ( ”LeftBoundary” , 132) = {4} ; /∗ LeftBoundary ∗/

Figure 9: 01 Ishape2D ece s1p adaptedMesh: Mesh generated for f = 1010 Hz.

The extracted R and L are done as explained in the previous test, the results can be
found in the folder
Results log/01 Ishape2Danalitic vs onelab/results9mar22 adaptedMesh, and they
can be seen in Fig. 11.
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2 TSHAPE2D

Figure 10: 01 Ishape2D ece s1p adaptedMesh: Mesh generated for f = 1011 Hz.

Figure 11: 01 Ishape2D ece s1p adaptedMesh: Results are better if you adapt the
mesh according to the field.

2 Tshape2D

This is the test similar to the one described in the [CIPL21] paper, to check that the
hybrid excitation is implemented correctly. The T part is conductive, there are three
terminals, the bottom terminal is always the ground.

2.1 Test 02 Tshape2D ece 1freq: ECE formulation, solve one
frequency

This test was done to check qualitatively the obtained results (Figs. 12 and 13).

16



2.1 02 Tshape2D ece 1freq 2 TSHAPE2D

Figure 12: 02 Tshape2D ece 1freq: Top voltage excited (ev) with 1 V, bottom ground
(gnd), right ev with V = 0 (but the value can be nonzero).

Figure 13: 02 Tshape2D ece 1freq: Top ev 1 V, right current excited (ec) 0 A (open)

17



2.2 02 Tshape2D ece s2p 2 TSHAPE2D

2.2 Test 02 Tshape2D ece s2p: ECE formulation, solve several
frequencies, write s2p file

In this test you can chose from the interface the type and excitation and the active
terminal (Fig. 14).

In order to be able to generate the s2p file, you have to do two simulations, one having
the active terminal the one numbered as 1 and the other simulation with the active
terminal number 2. Each simulation writes two s1p file. After the 2 simulations you have
four s1p files that can be combined in a s2p file with a Matlab script you can find in
the Results log/02 Tshape2D MIMO assembleS2P folder. Details are given in the
readme.txt file you can find there.

Figure 14: 02 Tshape2D ece 1freq: Top voltage excited (ev) with 1 V, bottom ground
(gnd), right ev with V = 0 (but the value can be nonzero).

Depending on the excitation type, the generated s2p file will represent an impedance
matrix Z, an admittance matrix Y or a hybrid matrix (H or G).

Examples for all these 4 cases can be found in the
Results log/02 Tshape2D MIMO assembleS2P/results9mar22 folder.
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3 ISHAPE3D

3 Ishape3D

3.1 Model description and analytic solution

This is the test described in the [CIS22] paper.
This test is a cylindrical domain with radius a and length l, having linear and ho-

mogeneous material properties. Its ends are two terminals, one grounded and the other
excited either in current or voltage. This configuration has the advantage that a formula-
tion with classical boundary conditions is equivalent to a formulation with ECE boundary
conditions. The classical boundary conditions formulation admits an analytic solution in
terms of Bessel functions for the current excitation case (see Appendix B). This is used to
validate the numerical solution of FEM, in 3D-FW regime with ECE boundary conditions.

The analytic solution is computed with the code main Ishape.m that can be found
in the folder Results log/Ishape3Danalitic.

3.2 Test 03 Ishape3D ece Brep 1freq: ECE formulation, solve
one frequency, Brep for the geometry

In this test the cylinder was defined by using boundary representation, using 5 + 5 points,
2 x 4 quarters of circles, and 4 lines, then 6 surfaces (2 disks + 4 curved surfaces) + one
volume (Fig. 15).

Figure 15: 03 Ishape3D ece Brep 1freq: Description of the Ishape3D using the build-
in gmsh Kernel.

In this way, the physical regions associated to the boundary can be set easily and use
the same ECE formulation defined in onelab for the Ishape2D problem.

Pay attention to set a problem depth to 1 (so that it is harmless when postprocessing).
This is set at the end of the file Ishape3d data.

Figures 16 - 19 there are some results (radius of the cylinder a = 2.5 µm, and length
l = 10 µm).
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3.2 03 Ishape3D ece Brep 1freq 3 ISHAPE3D

Figure 16: 03 Ishape3D ece Brep 1freq: f = 1e7 Hz, voltage excitation with 1V,
Potential on the boundary which does not include terminals.

Figure 17: 03 Ishape3D ece Brep 1freq: Mesh (1003 degress of freedom), and its
statistics.

Figure 18: 03 Ishape3D ece Brep 1freq: E – real part.
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3.3 03 Ishape3D ece s1p OCC adaptedMesh 3 ISHAPE3D

Figure 19: 03 Ishape3D ece Brep 1freq: Gradient of V – only in a layer near the
boundary.

3.3 Test 03 Ishape3D ece s1p OCC adaptedMesh: ECE formu-
lation, solve several frequencies, CSG for the geometry,
adapted mesh

Inspired by gmsh tutorial no. 10, here it is another description of the Ishape3D, using
constructive solid geometry (Open Cascade Kernel). You can see that the discretization
takes into account the skin depth, and the mesh is coarser in the middle of the cylinder.

1 /∗ Ishape3d . geo
2 Geometr ical d e s c r i p t i o n ( f o r gmsh) o f Ishape3D t e s t f o r ECE
3 For d e t a i l s , s ee comments in the Ishape3d data . pro f i l e
4 Meshing in format ion i s a l s o de f ined here .
5
6 This uses OpenCascade
7 ∗/
8
9

10 Inc lude ” Ishape3d data . pro” ;
11 SetFactory ( ”OpenCASCADE” ) ;
12
13 xc = 0 ; yc = 0 ; zc = 0 ;
14 vx = 0 ; vy = 0 ; vz = l ;
15 rad ius = a ;
16
17 volDom = newv ; Cyl inder (newv) = {xc , yc , zc , vx , vy , vz , rad ius } ;
18
19 b ( ) = Boundary{ Volume{volDom } ; } ;
20 Pr i n t f ( ” s u r f a c e s ” , b ( ) ) ;
21
22 // In order to i d e n t i f y which su r f a c e i s which I played with the GUI ! ! !
23
24 l a t e r a l C y l = b (0) ;
25 bottomSurf = b (1) ;
26 topSur f = b (2) ;
27
28 l c ( ) = Boundary{ Sur face { l a t e r a l C y l } ; } ;
29 Pr i n t f ( ” curves ” , l c ( ) ) ;
30 c i r c l e 1 = l c (0 ) ;
31 l i n eCy l = l c (1 ) ;
32 c i r c l e 2 = l c (2 ) ;
33
34 // Phys i ca l r e g i on s
35 // −−−−−−−−−−−−−−−−−−−−−−−−−−
36 Phys i ca l Volume ( ” MaterialX ” , 100) = {volDom} ; /∗ MaterialX ∗/
37
38 Phys i ca l Sur face ( ”Ground” , 120) = {bottomSurf} ; /∗ Ground ∗/
39 Phys i ca l Sur face ( ”Terminal ” , 121) = { topSurf} ; /∗ Terminal ∗/
40 Phys i ca l Sur face ( ”BoundaryNotTerminal” , 131) = { l a t e r a l C y l } ;
41
42 /∗ D e f i n i t i o n o f parameters f o r l o c a l mesh dimensions ∗/
43 // l c a r = s ∗ l /10 ; // c h a r a c t e r i s t i c l ength o f mesh element
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3.3 03 Ishape3D ece s1p OCC adaptedMesh 3 ISHAPE3D

44
45 // nbDelta from data . geo , number o f e lements per sk in depth
46
47 de l t a = Sqrt (2 . 0/ (2∗ Pi∗Freq∗mu∗ sigma ) ) ;
48 l c a rDe l t a = de l t a /nbDelta ;
49 l c a r = s ∗ l /10 ;
50
51 F ie ld [ 1 ] = Cyl inder ;
52 F ie ld [ 1 ] . VIn = l c a r ;
53 F ie ld [ 1 ] . VOut = l c a r ;
54 F ie ld [ 1 ] . Radius = a ;
55 F ie ld [ 1 ] . XCenter = 0 ;
56 F ie ld [ 1 ] . YCenter = 0 ;
57 F ie ld [ 1 ] . ZCenter = l /2 ;
58 F ie ld [ 1 ] . XAxis = 0 ;
59 F ie ld [ 1 ] . YAxis = 0 ;
60 F ie ld [ 1 ] . ZAxis = l ;
61
62 F ie ld [ 2 ] = Cyl inder ;
63 F ie ld [ 2 ] . VIn = a /3 ;
64 F ie ld [ 2 ] . VOut = l ca rDe l t a ;
65 F ie ld [ 2 ] . Radius = a − de l t a ;
66 F ie ld [ 2 ] . XCenter = 0 ;
67 F ie ld [ 2 ] . YCenter = 0 ;
68 F ie ld [ 2 ] . ZCenter = l /2 ;
69 F ie ld [ 2 ] . XAxis = 0 ;
70 F ie ld [ 2 ] . YAxis = 0 ;
71 F ie ld [ 2 ] . ZAxis = l ;
72
73 F ie ld [ 3 ] = Min ;
74 F ie ld [ 3 ] . F i e l d s L i s t = {1 ,2} ;
75 Background Fie ld = 3 ;
76 Mesh . MeshSizeExtendFromBoundary = 0 ;
77 Mesh . MeshSizeFromPoints = 0 ;
78 Mesh . MeshSizeFromCurvature = 0 ;
79 Mesh . Algorithm = 5 ;

Now, the mesh generated depends on the frequency, e.g. you can see below the DoFs
and how the meshes look like.

Freq no Freq [Hz] Dofs-1elem per skin depth Dofs-2elem per skin depth
1 1e7 1828 1828 (here no skin depth)
2 1.1e10 2981 19945
3 2.2e10 5586 40670
4 3.3e10 8145 60828
5 4.4e10 10223 81200
6 5.6e10 12321 103455
7 6.7e10 14326 124326
8 7.8e10 17852 146441
9 8.9e10 17890 168613
10 1e11 19333 190024

Figure 20: 03 Ishape3D ece s1p OCC adaptedMesh: f = 1e7 Hz, no skin effect
here.
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3.3 03 Ishape3D ece s1p OCC adaptedMesh 3 ISHAPE3D

Figure 21: 03 Ishape3D ece s1p OCC adaptedMesh: f = 3e10 Hz, some skin effect.
1 elem per skin depth, 7276 dofs.

Figure 22: 03 Ishape3D ece s1p OCC adaptedMesh: f = 3e10 Hz, 2 elems per skin
depth, 54406 dofs.

The results of this test can be found in the file
Results log/03 Ishape3Danalitic vs onelab/results9mar22.

They were used to obtain the figures in the [CIS22] paper, which are also shown here
in Fig. 23.

Figure 23: 03 Ishape3D ece s1p OCC adaptedMesh: These results validate that
the ECE implementation is also correct for 3D models.

Figure 23 also include the formulation with V inside. To obtain the results for
this formulation, you have to modify one line in the Ishape3D.pro file in the folder
03 Ishape3D ece s1p OCC adaptedMesh, as follows:
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3.4 03axi Ishape2.5D ece s1p adaptedMesh 3 ISHAPE3D

Instead of:

/* The formulation and its tools */

Include "../problemIndependent_proFiles/FullWave_E_ece_SISO.pro"

//Include "../problemIndependent_proFiles/FullWave_E_ece_SISO_Vinside.pro"

Change to

/* The formulation and its tools */

//Include "../problemIndependent_proFiles/FullWave_E_ece_SISO.pro"

Include "../problemIndependent_proFiles/FullWave_E_ece_SISO_Vinside.pro" -

3.4 Test 03axi Ishape2.5D ece s1p adaptedMesh: 2D AXI model
for Ishape 3D

Ishape3D was used in order to verify the implementation for a 3D problem with analytic
solution. However, Ishape3D can be more efficiently modeled with a 2D axisymmetric
model.

This is given in the folder 03axi Ishape2.5D ece s1p adaptedMesh.
What you have to do is just set the correct flags at the end of the file Ishape2dAXI data.pro.

modelDim = 2; //

Flag_Axi = 1; // 1 for AXI - it makes sense only for modelDim = 2

If ((modelDim == 2)&&(Flag_Axi == 0))

h2Ddepth = h;

ElseIf ((modelDim == 2)&&(Flag_Axi == 1)) // 2D AXI

h2Ddepth = 2*Pi;

Else // 3D

h2Ddepth = 1;

EndIf

The mesh is generated with boundary representation and fineness that depend on the
skin depth. Figures 24 - 26 show some results.

Figure 24: 03axi Ishape2.5D ece s1p adaptedMesh: 2D AXI domain for the
Ishape3D test case, here f = 3e10, so skin effect is present, the mesh is finer near the
right boundary.

24



3.4 03axi Ishape2.5D ece s1p adaptedMesh 3 ISHAPE3D

Figure 25: 03axi Ishape2.5D ece s1p adaptedMesh: E field for the situation de-
scribed in Fig. 24.

Figure 26: 03axi Ishape2.5D ece s1p adaptedMesh: V in the 2D AXI model, for
f =1e7 Hz.
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4 LC

4 LC

4.1 Test 04 LC GeometryInStepFile ece s1p: ECE formulation,
solve several frequencies, geometry in a STEP file.

This is the example described in [OH21]. The authors provided the step file, which you
can find in the folder 04 LC GeometryInStepFile ece s1p.

The frequencies are set in LC data.pro: 10 points between fmin = 1 kHz, fmax =
80 kHz.

Figure 27: 04 LC GeometryInStepFile ece s1p: LC test, with the geometry in the
STEP file.

Just run the LC.pro file. The result obtained for 187560 dofs can be found in the folder
Results log/04 LC/results9mar22/res LC GeometryInStepFile/FWeceBC voltExc
when voltage excitation was used.

For instance, the test Y RI.s1p is

# Hz Y RI R 50

1000 0.0003516313952579203 0.2114244959595226

1627.250609936924 0.001035845806292761 0.3513803462372218

2647.944547540091 0.00357235280653572 0.6059373855629445

4308.869380063769 0.01784118774430161 1.170036455418785

7011.610326847304 0.2822621657652343 3.708672395856161

11409.64718100232 0.5516073272169192 -3.993703209313727

18566.35533445113 0.08046091682579434 -1.237822757593129

30212.11304229127 0.02977220783987155 -0.6474613541863959

49162.67937555176 0.01266569445264791 -0.3788176066059606

80000.00000000003 0.005567725147544824 -0.2293839213794721

You can use the Matlab code
main Irms PhaseDiff LC GeometryInStepFile.m so that to compare this numeri-
cal result with the reference result (the circuit) from [OH21]. It is important to note that
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4.2 04 LC ParametricGeometryInGeoFile ece s1p 4 LC

the comparison makes sense since the shape and dimensions of the air box in this test are
exactly the same as in the reference paper.

4.2 Test 04 LC ParametricGeometryInGeoFile ece s1p: ECE for-
mulation, solve several frequencies, parametric geometry in
a geo file.

This is, in principle, the same problem as the one in the previous section, but the geometry
was built in a parametric way, by using the built-in kernel of gmsh.

Figure 28: 04 LC GeometryInStepFile ece s1p: LC test, with a parametric geometry
described with Brep.

Just run the CL.pro file. The result obtained for 330511 dofs can be found in the
folder
Results log/04 LC/results9mar22/res LC ParametricGeometryInGeoFile/
FWeceBC voltExc when voltage excitation was used.

You can use the Matlab code
main Irms PhaseDiff LC ParametricGeometryInGeoFile.m so that to compare
this numerical result with the reference result (the circuit) from [OH21]. It is important to
note that the comparison makes sense only partially here, since the shape and dimensions
of the air box in this test are not the ones in the reference paper (Fig. 28). See the
Conclusion section for more comments on this issue.
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6 INTEGRATE GMSH AND GETDP WITH MODEL ORDER REDUCTION
BASED ON AFS AND VF

5 Call gmsh and getdp from Matlab

In the folder 05 SimpleExampleCallingOnelabFromMatlab you can find two sub-
folders:

• 01b Ishape2D ece s1p - is the classical way of working in onelab.

• 01b Ishape2D ece s1p callFromMatlab - the same example run from Matlab,
system calls are used for gmsh and getdp.

You should carefully compare the files, as well as read the readme.tex file that you
will find in that folder.

6 Integrate gmsh and getdp with model order reduc-

tion based on AFS and VF

Details about the adaptive frequency sampling (AFS) can be found in [CILD12]. AFS is
using which is used in conjunction with the vector fitting procedure (VF) [GS99]. The
VF code was downloaded from https://www.sintef.no/projectweb/vectorfitting/ and it is
included in the MatlabSources folder.

The example discussed in this section can be found in the folder
06 LC GeometryInStepFile ece s1p callFromMatlab AFS.

6.1 Call from Matlab

The information about the parameters for AFS has to be given in a file, here it is called
set infofreqAFS vf LC.m. The function in this file will return two structures, one for
the frequency information, and the other for the VF procedure.

In the example below, the list of frequencies starts with the two end points: 1 kHz
and 80 kHz (line 6), the AFS flag is set to True in line 7 (otherwise only the frequency
values in the frequency points vector will be used). The AFS error is set (line 9) to 1 %
(which is a reasonable value because it is a local one – see [CILD12]. The order of the
reduced transfer function is increased from 1 and the maximum possible value is set to
40 (lines 15 and 16). The other parameters are specific to VF, see [GS99].

An important parameter is the number of points in which the transfer function will
be evaluated, below this value is set to 100 (line 27). This is a cheap evaluation, because
it is the evaluation of a transfer function for which we know the poles, the residues, and
the constant terms. It is important here to have many points so that to catch how the
frequency characteristics looks like.

1 % F i l e s e t in fo f r eqAFS vf LC .m
2
3 func t i on [ f requency data , avf itParams ] = set in fo f r eqAFS vf LC ( )
4
5 f requency data . f r equency un i t = ’Hz ’ ;
6 f r equency data . f r equency po in t s = l i n s p a c e (1000 ,80000 ,2) ;
7 f r equency data .AFS. f l a g = (1 == 1) ;
8 f r equency data .AFS. max = 1000;
9 f r equency data .AFS. e r r = 0 . 0 1 ;

10 f requency data .AFS. type = ’ v f i t l i n f ’ ; % ’ l i n ’ , ’ poly ’ , ’ v f i t ’ sau ’ v f i t l i n f ’
11 method = ’ onelab ’ ;
12
13 % a v f i t params
14 avf itParams = [ ] ;
15 avf itParams . minOrder = 1 ;
16 avf itParams . maxOrder = 40 ;
17 avf itParams . t o l = 1e−4;
18 avf itParams . noCal l s = 2 ;

28

https://www.sintef.no/projectweb/vectorfitting/


6.1 Call from Matlab
6 INTEGRATE GMSH AND GETDP WITH MODEL ORDER REDUCTION

BASED ON AFS AND VF

19 avf itParams . typeTransferFunct ion = 2 ; %1 f o r S t r i c t l y Proper , 2 f o r Proper , 3 f o r Improper
20 avf itParams . g r aph i c sV f i t = ’ no ’ ; %’ yes ’ , o therwi se t r ea t ed as ’ no ’
21 avf itParams . s t opCr i t e r i on = 0 ; %0 − components f o r what i t i s ( codes ta r way) , 1 − Frobenius S , 2 −

Components S
22 % only 0 t e s t ed f o r the moment .
23
24 avf itParams . f i l e o u t = ’ t e s t . c i r ’ ;
25 avf itParams . idx = 0 ; % u s e f u l only when combined with sys2snp
26 avf itParams . save . f l a g = ’ no ’ ; % compute and save v f i t approximation in many po int s during i t e r a t i o n s ; ’

yes ’ or ’ no ’
27 avf itParams . save . nopoints = 100 ; % no o f po ins f o r the computation o f v f i t approximation
28 avf itParams . save . type = ’ l i n ’ ; % how these po in t s are placed : l i n or otherwi se log in the f r e q range
29 avf itParams . save . flagMA = ’ no ’ ;
30 avf itParams . save . flagMAinDB = ’ no ’ ;
31 avf itParams . startFrom = ’ lowestOrder ’ ;
32
33 end

You have also to write a Matlab main file, where you set the excitation type, see the
file mainMatlab LC AFS.m, line 11.

1 func t i on mainMatlab LC AFS ( )
2
3 r e s t o r e d e f a u l t p a t h ;
4 sourcespath = genpath ( ’D:\ Gabr ie la\OneLab\mytests\ECEforOnelab\ECEinOnelab E 2021\MatlabSources ’ ) ;
5 addpath ( sourcespath ) ;
6
7 c l o s e a l l ;
8 c l e a r v a r s ; format long
9 c l c

10
11 Flag Analys isType = 0 ; % 0 f o r ev , 1 f o r ec
12
13 % s imulare
14 i f ( Flag Analys isType == 0)
15 snp in f o . ptype = ’Y ’ ;
16 f i l eNameFina l = ’ r e s \FWeceBC voltExc\LC Y RI ’ ; % exten s i on s w i l l be added
17 e l s e
18 snp in f o . ptype = ’Z ’ ;
19 f i l eNameFina l = ’ r e s \FWeceBC crtExc\LC Z RI ’ ; % ext en s i on s w i l l be added
20 end
21
22 snp in f o . p f o r m a t f i l e = ’RI ’ ;
23 snp in f o . Z0 = 50 ;
24 snp in f o . nports = 1 ; % no o f t e rmina l s
25 snp in f o . t o l p o l e s = 1e−2;
26
27 [ f requency data , avf itParams ] = set in fo f r eqAFS vf LC ( ) ;
28 [ f r equency response , f requency data , t r f c t ] = . . .
29 a f s v f o n e l a b ( f requency data , snp in fo , avfitParams , Flag Analys isType ) ; %old sys2snp v f3
30 t r f c t
31
32 % wr i t e a l l the s o l u t i o n s
33 pformat = ’RI ’ ;
34 Z0 = 50 ;
35 i f f r equency data .AFS. f l a g
36 snp f i l ename = s t r c a t ( f i leNameFinal , ’ o n e l a b A F S v f i t l i n f ’ , . . .
37 s p r i n t f ( ’%f ’ , f r equency data .AFS. e r r ) , ’ erVF ’ , . . .
38 s p r i n t f ( ’%f ’ , avf itParams . t o l ) , ’ . s ’ , num2str ( snp in f o . nports ) , ’p ’ ) ;
39 e l s e
40 snp f i l ename = s t r c a t ( f i leNameFinal , ’ . s1p ’ ) ;
41 end
42 wr i tesnp v2 ( snp f i l ename , f r equency data . f r equency po int s , . . .
43 f r equency response , s np in f o . ptype , . . .
44 f r equency data . f r equency un i t , s np in f o . Z0 , pformat ) ;
45 i f ( Flag Analys isType == 0)
46 system ( s t r c a t ( ’move ∗ . s1p r e s \FWeceBC voltExc \ . ’ ) ) ;
47 system ( s t r c a t ( ’move ∗ . c i r r e s \FWeceBC voltExc \ . ’ ) ) ;
48 e l s e
49 system ( s t r c a t ( ’move ∗ . s1p r e s \FWeceBC crtExc \ . ’ ) ) ;
50 system ( s t r c a t ( ’move ∗ . c i r r e s \FWeceBC crtExc \ . ’ ) ) ;
51 end
52
53 end

The call to onelab is done in the afs vf onelab.m function, which calls the solve onelab.m
function which is in the problem folder, where you can see the system calls to gmsh (line
12) and getdp (line 23).

1 func t i on value = so l v e one l ab ( f r eq s , Flag Analys isType )
2 % path to gmsh and getdp should be s e t
3
4 i f ( Flag Analys isType == 0)
5 f i leName = ’ r e s \FWeceBC voltExc\ tes t Y RI . s1p ’ ;
6 e l s e
7 f i leName = ’ r e s \FWeceBC crtExc\ t e s t Z RI . s1p ’ ;
8 end
9

10 NbFreqs = length ( f r e q s ) ;
11
12 system ( s p r i n t f ( ’ gmsh LC. geo −setnumber Flag Analys isType %d −3 −v 2 ’ , Flag Analys isType ) ) ;
13
14 f o r k = 1 : NbFreqs
15 di sp (k ) ;
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16 di sp ( f r e q s (k ) ) ;
17 f r eq sk = f r e q s (k ) ;
18 i f k == 1
19 f i r s t F r e q = 1 ;
20 e l s e
21 f i r s t F r e q = 0 ;
22 end
23 system ( s p r i n t f ( [ ’ getdp LC. pro −setnumber Freq %g f r e q s %g −setnumber Flag Analys isType %d −

setnumber f i r s t F r e q %d −s o l v e FullWave E ece −v 3 −pos TransferMatr ix ’ ] , . . .
24 f reqsk , f r eqsk , Flag AnalysisType , f i r s t F r e q ) ) ;
25 end
26 [ ptype , p f o rmat f i l e , f r equency po int s , value , Z0 , . . .
27 f r e q un i t , nports ] = loadsnp ( s t r c a t ( ’ . / ’ , f i leName ) ) ;
28 system ( s t r c a t ( ’ de l ’ , s t r c a t ( ’ .\ ’ , f i leName ) ) ) ;
29 end

6.2 Looking at the results

Information is written in the Matlab console as well as in several files. For instance, we
can see that a final reduced order model of order 4 was obtained, and only the evaluation
of 7 points was needed, info written in the console:

Poles

-9.984919457926706e+04 + 0.000000000000000e+00i

-4.096739685388231e+05 + 0.000000000000000e+00i

-1.442744503658989e+03 + 5.667359773381735e+04i

-1.442744503658989e+03 - 5.667359773381735e+04i

Number of computed frequencies = 7

The transfer function is a structure obtained as output

trfct =

order: 4

poles: [4x1 double]

residues: [1x1x4 double]

kinf: 1.765940138632837e-04

prop: 0

The files are written in the folder res/FWeceBC voltExc. You can look at what
happened throughout all the AFS iterations.

The following files were created:

LC_Y_RI_onelab_AFSvfitlinf_0.010000_erVF0.000100.s1p

vfit_final_iter1_ord1.s1p

vfit_final_iter2_ord2.s1p

vfit_final_iter3_ord4.s1p

vfit_final_iter4_ord4.s1p

vfit_final_points1_ord1.s1p

vfit_final_points2_ord2.s1p

vfit_final_points3_ord4.s1p

vfit_final_points4_ord4.s1p

test.cir

You can inspect them easily with snpdiff tool command, but let’s look only at the
final result. The files *points* contain the frequencies that were evaluated with onelab.
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In this case in this case vfit final points4 ord4.s1p is the last file, it contains 7 fre-
quencies.

The file LC Y RI onelab AFSvfitlinf 0.010000 erVF0.000100.s1p is just a copy
of vfit final points4 ord4.s1p, the name however is generated automatically and keeps
the information used in the simulation:

Figure 29: 06 LC GeometryInStepFile ece s1p callFromMatlab AFS: LC test,
with AFS and VF - only 7 points evaluated with FEM.

The files *iter* contain the result of evaluating the transfer function in the number
of points you have set (here 100):

Figure 30: 06 LC GeometryInStepFile ece s1p callFromMatlab AFS: LC test,
with AFS and VF - 100 cheap evaluations of the obtained rational approximation.

Now, by using the snpdiff-tool command we can display the points computed by onelab
and the points for the rational expression (Fig. 31).

Finally we can compare the result with AFS (and 7 FEM evaluations chosen in an
adaptive way) with the previous result, where 10 frequency points were used sampled
equidistantly in the frequency range (Fig. 32).
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Figure 31: 06 LC GeometryInStepFile ece s1p callFromMatlab AFS: LC test,
with AFS and VF - only 7 points evaluated with FEM (red / star points) and the rational
approximation (black curve - obtained with 100 cheap evaluations).

Figure 32: 06 LC GeometryInStepFile ece s1p callFromMatlab AFS: LC test,
AFS approximation (black curve - 7 FEM evaluations) and the 10 equidistant points
(FEM evaluations) in the frequency range.

These results can be found in the folder
Results log/04 LC/results27oct21 afs figuresJMI/res. You can find there some
other useful scrips that allowed us to compare these results with the reference paper. Just
explore the folder while reading the paper [CIS22].
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7 Conclusions - important notes about parameter ex-

traction

The main advantage of ECE BC for the Maxwell equations is that the ports are well de-
fined, without ambiguity, and compatible with the circuit terminals, even for RF devices.
There is no restriction on the field regime (DC to full wave, even including nonlinear
media). For MIMO systems, the hybrid excitation is obtained in a natural way.

It is important to be aware that ECE BC for parameter extraction can be applied only
to a simply connected subdomain, obtained after partitioning the domain corresponding
to a whole system in parts that do not overlap or do not have holes. From this point
of view, the LC test above has to be considered with care, since it is like that we know
that the current return path is through the boundary. Here, we rather extract a partial
inductance. In this case, which is rather coming from a circuit view and not from a field
view, the magnetic energy is concentrated around the coils which has a very permeable
core. If we imagine that we extend the airbox, the magnetic energy increases and thus
the inductance, when the air box would tend to infinity, the inductance would also tend
to infinity and thus it will have no meaning. In the modeling of a real device, and not an
academic one, it is important to start from a field domain, with computational domain and
boundary conditions chosen in a correct way. For instance, how the device is connected
to its source or its outside circuit.

As a general conclusion, ECE BC is a result of a careful domain partitioning. When
the extracted models are interconnected, the loops (”holes”) thus obtained must not be
new field sources, i.e. there should not exist a magnetic field crossing them. The issue of
the LC test, which has that airbox around it, comes from the fact that the terminals are
not close to each other. That is why the extracted inductance is unbounded when the
air box goes to infinity. A remedy for this academic example is to bend the conductor so
that the terminals are on the same side of the airbox, close to each other. This will cure
the problem of an unbounded inductance.

From the inductance extraction point of view, the LC test problem is not proper, as
the extracted inductance depends on the size of the airbox and tends to infinity if the
airbox goes to infinity. Indeed, the airbox boundary is the support of the current return
path. This issue is inherent to the model and independent of the boundary conditions.
However, we have adopted the same airbox (size and shape) as in the reference paper
[OH21], we can thus extract and compare the values to those in the reference paper.

An illustrative explanation related to the discussion above can be found here
http://literature.cdn.keysight.com/litweb/pdf/5989-9526EN.pdf, and Agillent calles this
an ”unphysical port”. This is strongly related to the discussion here
https://www.protoexpress.com/blog/current-return-path-signal-integrity/.

At measurements and parameter extraction, the terminals of the device under test
(DUT) have to be placed as closed as possible, so that big loops do not appear that
involved the wires that connect the measured port and the measuring device.
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Figure 33: Unphysical port: Figure from
http://literature.cdn.keysight.com/litweb/pdf/5989-9526EN.pdf

Figure 34: Importance of current return path for signal integrity. Figure from
https://www.protoexpress.com/blog/current-return-path-signal-integrity/.
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A Ishape2D

2D domain, of dimensions (2a) × l. It is useful to imagine a depth h, it will be used
when computing R and L parameters Axes are chosen so the the computational domain
is x ∈ [−a, a], y ∈ [0, l] The plane y = 0 (intersected with the domain) is a terminal. The
plane y = l is the second terminal, grounded.

It is like we have an infinitely extended bar, we excited it on the bottom surface (which
is infinitely extended), but we focus only at a zone of area 2a × h. The electric field is
solely oriented along Oy and depends only on x. The magnetic field is oriented solely
along Oz and depends only on x. The quantities do not depend on y.

The problem is symmetrical from the point of view of the electric field and anti-
symmetric from the point of view of the magnetic field

Analytic solution – dc:
Rhcc = l/(σ2ah)

Lhcc = µla/(6h)

Rhcc – obvious; Lhcc – can be computed with an energetic reasoning
Analytic solution – strong skin effect

δ =
√

2./(2π. ∗ fµσ)

Rhpp = l./(σ2δh)

obvious

Lhpp = lµδ/(4h)

- energetically
The Helmholtz vector equation in H is in this case (2D, homogeneous domain) becomes

a differential ODE of second order for Hz, which is easy to be solved. After imposing
symmetry conditions, Hz has the form 2 C sh(gamma x), where C is computed from
the imposed boundary condition given by I. The electric field E is computed from the
complex form of the magnetic circuit law, and the complex power received by the domain
is computed easily, by integrating the Poynting vector.

gamma_cplx_patrat = 1i*omega*mu0.*(sigma + 1i*omega*eps0);

gamma_cplx = sqrt(gamma_cplx_patrat);

shga = sinh(gamma_cplx*a);

chga = cosh(gamma_cplx*a);

crt = 1;

Ey_complex = (gamma_cplx./(sigma + 1j*omega*eps0)).*(chga./shga)*crt/(2*h);

Hz_complex = crt/(2*h);

P_ap_cplx_lineic = 2*Ey_complex*conj(Hz_complex)*l*h;

Ranalitic = real(P_ap_cplx_lineic);

X_h = imag(P_ap_cplx_lineic);

Lanalitic = X_h./omega;
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B Ishape3D

A cylindrical conductor, of length l, circular cross-section of radius a, with linear and
homogenous material, of conductivity σ, permeability µ, permittivity ε, is excited with
an alternating current, of frequency ω and root mean square I, initial phase zero (so
complex representation I = I).

This est problem has the following advantages:

• it admits an equivalent formulation with classical boundary conditions (with ~Et and
~H t);

• it admits an analytical solution, so we can compare numerical results with analytic
ones.

Formulation with classical boundary conditions

~Et = ~0~Et = ~0

~H t = I/(2πa)ûϕ

µ, σ, ε

l

a

Formulation with ECE boundary conditions

µ, σ, ε

l

aI
V = 0

S1 S2

~Et = ~0 ~Et = ~0

~Et = −∇V
n̂ · ~J t = 0

Analytic solution
Below we will asume that the conductor is infinitely long and insulated from other

conductors. In FEM the model is 3D, with a length l.
Let’s start with the extreme cases which are easily to obtain: the DC case and the case

with strong skin depth.
Line resistance - extreme cases1

• in DC

Rl,cc =
1

σπa2
(1)

• in the case of strong skin depth,

Rl,pp =
1

σ2πaδ
(2)

1cc - curent continuu (direct current); pp - efect pelicular pronunţat (strong skin depth)
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where

δ =

√
2

ωµσ
(3)

is the skin depth.

Internal line inductance - extreme cases

• in DC
Ll,cc =

µ

8π
(4)

• in the case of strong skin depth

Ll,pp =
µδ

4πa
(5)

The D.C line inductance can be computed energetically, as follows. If we denote by I the
total current, the magnetic field inside the conductor has the modulus H(r) = Ir/(2πa2) and
the magnetic energy density wm(r) = µH2/2. The energy density is integrated in the whole
volume, considering a volume element with only one dimension infinitely small dv = 2πrl dr,
where r goes from 0 to a. The magnetic energy stored inside the conductor is Wm = µI2l/(16π)
and thus expression (4) is obtained.

In the case of a strong skin depth, the current can be assumed distributed along a circular
crown of internal radius a− δ and external radius a. The internal magnetic field is non-uniform,
for r = a it has the modulus

H(a) =
I

2πa

and for r = a− δ,
H(a− δ) = 0.

This is in fact an MQS problem, and thus

~E = −∇V − ∂ ~A

∂t
,

so in harmonic case
~E = −∇V − jω ~A.

The component ∇V : we can assume that it correspond to a current that is uniformly distributed
on the circular grown of width δ, so −∇V = I/(σ2πaδ)~k, where we assumed that the axis of
the cylinder is Oz.

To compute the magnetiv vector potential ~A = A~k, we considere a closed curve having
a rectangular shape, with an edge of length h along the cylinder axis, and the edge that is
paralel to this placed on the cylinder surface. We express the magnetic field in two ways.∮

Γ1

~A · ~dl =
∫
SΓ1

~B · ~dA, and thus we obtain A(a)h = µ0h
∫ a
a−δH(r) dr and because δ is very

small, we can use an approximate formula (similar to the trapezoidal rule) and thus A(a) =
µ0H(a)/2δ = µ0I/(2πa)/2δ = µ0Iδ/(4πa). It follows that

~E(a) =

(
I

σ2πaδ
+ jω

µ0Iδ

4πa

)
~k

In order to compute the complex power transferred from outside to inside, we will need

| ~E(a)× ~H
∗
(a)| =

(
I

σ2πaδ
+ jω

µ0Iδ

4πa

)
I∗

2πa
=

I2

2πa

(
1

σ2πaδ
+ jω

µ0δ

4πa

)
and from this it follows that the complex power transferred to a conductor of length l is

P ap = | ~E(a)× ~H
∗
(a)|2πal = I2l

(
1

σ2πaδ
+ jω

µ0δ

4πa

)
= I2l(Rl + jωLl)
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and thus we obtain the expressions of the line resistance and inductance for a strong skin effect

Rl =
1

σ2πaδ
Ll =

µ0δ

4πa

Numerical example
Let’s consider a conductor with a diameter d = 5µm, length 10 µm, conductivity σ = 6.6·107

S/m (Aluminiu), and an extremely large frequency range, from 0.1 Hz, to 100GHz. Figures 35
and 36 hold the frequency depence of these extreme formulas.

f [Hz]

100 102 104 106 108 1010

R
 [
Ω

]

10-2

10-1
Rezistance

strong penetration depth

direct current

Figure 35: Resistance - extreme cases: direct current (blue) and strong skin depth (red).

f [Hz]

10-2 100 102 104 106 108 1010 1012

L
 [
H

]

10-13

10-12
Inductivity

strong penetration depth

direct current

Figure 36: Internal inductance - extreme cases: direct current (blue) and strong skin
depth (red).

The general case
We will show how the analytic formulas are obtained considering a FW regime, homogenous

conductor, no internal sources. Te MQS regime can be obtained by setting ε = 0.
Assume the conductor is excited with a current i(t) = I

√
2 sin(ωt), the current excitation

being the natural one in proving the analytic formulas.
The complex representation of the current is I = I.
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Do to the infinite extension of the conductor and the symmetry with respect to the Oz axis
assumed to be the cylinder axis, the field quantities will depend only on the radial coordinate r
of a cylindrical system of coordinates, as follows:

• the electric field is axial
~E = E(r)ûz (6)

• the magnetic field is transverse, only with an azimuth component

~H = H(r)ûϕ (7)

We will focus only on the field inside the conductor, where:

curl ~H = (σ + jωε) ~E (8)

curl ~E = −jωµ ~H (9)

Since the material is homogenous, from (8) it follows that

div ~E = 0 (10)

We apply curl to equation (9) and we combine it with (8):

curl curl ~E = −jωµ(σ + jωε) ~E (11)

It follows that
grad div ~E −4 ~E = −jωµ(σ + jωε) ~E (12)

and we obtain the Helmholtz complex vector equatio

4 ~E − jωµ(σ + jωε) ~E = 0 (13)

Let’s denote the complex propagation constant γ defined by

γ2 = jωµ(σ + jωε) (14)

In an algebraic form, the classical notation is

γ = α+ jβ (15)

where α is called attenuation constant and β is the wave number. It can be proven that they
have the expressions

α = ω

√√√√µε

2

[√( σ
ωε

)2
+ 1− 1

]
, (16)

β = ω

√√√√µε

2

[√( σ
ωε

)2
+ 1 + 1

]
(17)

We denote by δ = 1/α the skin depth.
If σ >> ωε (MQS regime) α = β =

√
ωµσ/2 and it follows that δ =

√
2/(ωµσ).

Consequently, the Helmholtz vector equation is

4 ~E − γ2 ~E = 0 (18)
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which is equivalent to three scalar Helmholtz equations, one for each direction of the coordinate
system

In our case, since the electric field has only an axial component (relation (6)), the Helmholtz
equation becomes

4E − γ2E = 0 (19)

In cylindrical coordinates, the Laplace operator has the expression

4· = 1

r

∂

∂r

(
r
∂·
∂r

)
+

1

r2

∂2·
∂ϕ2

+
∂2·
∂z2

(20)

Since E depends only on r, the Helmholtz equation becomes

1

r

d

dr

(
r

dE

dr

)
− γ2E = 0 (21)

and hence
d2E

dr2
+

1

r

dE

dr
− γ2E = 0 (22)

The solution of this equation is (see appendix C)

E(r) = AJ0(jγr) +BY0(jγr) (23)

but since the computational domain includes the axis r = 0 and the field cannot be unbounded
on the axis, it means that B = 0 and the solution is

E(r) = AJ0(jγr) (24)

The integration constant A can be obtained by computing the magnetic field and imposing its
value on the cylinder surface, value that correspond to the imposed current.

The magnetic field H is obtained from the Faraday’s law of induction (9)

~H = − 1

jωµ
curl ~E (25)

Expressing the curl in cylindrical coordinates and considering the symmetry of the field, it
follows that

Hûϕ = − 1

jωµ

(
−dE

dr

)
ûϕ (26)

and thus

H(r) =
1

jωµ

d

dr

(
AJ0(jγr)

)
=

A

jωµ
jγJ ′0(jγr) = −A

γ

ωµ
J1(jγr) (27)

At the cylinder surface, the tangential component of the magnetic field is exactly H(a),
which has to be continuous (when passing from inside to outside), and consequently it has to
be equal to

H(a) =
I

2πa
=

I

2πa
(28)

It follows that

−A
γ

ωµ
J1(jγa) =

I

2πa
(29)

and hence

A = − ωµI

2πaγJ1(jγa)
(30)
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Consequently, the complex representations of the electric and magnetic fields are:

E(r) = − ωµI

2πaγJ1(jγa)
J0(jγr) (31)

H(r) =
ωµI

2πaγJ1(jγa)

γ

ωµ
J1(jγr) (32)

In order to compute the complex power transferred by the electromagnetic field to this
domain, we have to compute the Poyinting vector on the surface

~S(a) = ~E(a)× ~H(a)∗ = E(a)H(a)∗(ûz × ûϕ) = E(a)H(a)∗(−ûr) = −E(a)H(a)∗ûr (33)

The complex power transferred from outside to inside, to a domain of length l is

P ap =

∫
Σ

~S(a) · ~ni dA (34)

where ~ni is the normal oriented from outside to inside. Only the lateral surface of the cylinder
contributes to this result, the final formulas are:

P ap = l(2πa)E(a)H(a)∗ =

= l(2πa) · (−1)
ωµI

2πaγJ1(jγa)
J0(jγa) ·

(
I

2πa

)∗
=

= −l ωµI
2

(2πa)γ

J0(jγa)

J1(jγa)
(35)

From this expression, we can compute the resitance and the inductance, as frequency de-
pendent quantities

P ap = P + jQ = RI2 + jωLI2 (36)

and finally

R = −l ωµ
2πa

Real

(
J0(jγa)

γJ1(jγa)

)
(37)

L = −l µ
2πa

Imag

(
J0(jγa)

γJ1(jγa)

)
(38)

Let’s check the formulas, by computing the asymptotic limits at high frequencies. At high
frequencies, the ration between J0/J1 goes to −j.

In MQS β = α and thus γ = α(1 + j), α = 1/δ unde δ =
√

2/(ωµσ)
The expression in the parentheses of (37) and (38) becomes at strong skin depth

J0(jγa)

γJ1(jγa)
=

−j
α(1 + j)

= δ
−j(1− j)

2
= −δ1 + j

2
(39)

Consequently, what we obtain at strong skin depth from these general formulas is

Rpp = l
ωµ

2πa

δ

2
(40)

and replacing ωµ = 2/(σδ2) we end at

Rpp =
lδ

4πa

2

σδ2
=

l

σ2πaδ
(41)
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which is the same as (2).
For the imaginary part

ωLpp = l
ωµ

2πa

δ

2
(42)

and thus ωLpp = Rpp. It follows that

Lpp = l
µ

2πa

δ

2
= l

µδ

4πa
(43)

which is the same as (5).
The results are shown in figures 37 and 38.
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Figure 37: Resistance - analytic formula (red) vs. extreme formulas (blue).
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Figure 38: Internal inductance - analytic formula (red) vs. extreme formulas (blue).
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And a zoom-in and loglog scales (so that to better see the asymptotic behavior) in the figures
39 si 40.
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Figure 39: Resistance - analytic formula (red) vs. extreme formulas (blue)- zoom and
loglog plot.
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Figure 40: Internal inductance - analytic formula (red) vs. extreme formulas (blue)- zoom
and loglog plot.
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C Bessel equations and function Bessel - minimal!

The Bessel differential equation is

x2 d2y

dx2
+ x

dy

dx
+ (x2 − ν2)y = 0 (44)

where ν ∈ R si x ∈ C, y : C→ C. If we divide by x2 the equation is equivalent to

d2y

dx2
+

1

x

dy

dx
+

(
1− ν2

x2

)
y = 0 (45)

The solutions of this equation are given by

• first kind Bessel functions of order ν denoted by Jn(x)

• second kind Bessel functions of order ν denoted by Yn(x)

The solution of the equation is

y(x) = AJν(x) +BYν(x) (46)

where A and B are complex constants that have to be computed by imposing conditions that
ensure the uniquness of the solution.

For details and representations of Bessel function, see for instance

• http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html

• http://mathworld.wolfram.com/BesselFunctionoftheSecondKind.html.

It is important to note that second kind Bessel functions are unbounded in the origin,
In order to link this to the equations obtained using EM field, let’s consider the change of

variable
x = jγr (47)

and thus it follows that

dy

dx
=

1

jγ

dy

dr
(48)

d2y

dx2
=

1

−γ2

d2y

dr2
(49)

and equation (45) is re-written as

d2y

dr2
+

1

r

dy

dr
−
(
γ2 +

ν2

r2

)
y = 0 (50)

The solution of this equation is

y(r) = AJν(jγr) +BYν(jγr) (51)

In particular, the equation
d2y

dr2
+

1

r

dy

dr
− γ2y = 0 (52)

will have the solution
y(r) = AJ0(jγr) +BY0(jγr) (53)

An property that is useful for us is the expression of the derivative of the first kind Bessel
function and order 0:

J ′0(x) = −J1(x) (54)
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D UNDERSTANDING THE GETDP FILE

D Understanding the GetDP file for FW, with ECE,

formulation with E inside and V on the boundary

For details see [CIS22], here it is just the minimal information so that we can explain the
matching with the GetDP description.

D.1 Weak formulation (continuous)

Find E ∈ HE and V ∈ HV , so that

a(E,E′) = f(E′), ∀E′ ∈ HE,0; (55)∮
∂Sk

H · dl = Ik, k ∈ Ic; Et = −∇2V, on ∂Ω,

where

a(E,E′) =

∫
Ω

[
(ν∇×E) · (∇×E′) + jω(σ + jωε)E ·E′

]
dx, (56)

f(E′) = jω
∑
k∈Ic

V ′kIk; (57)

and E′t = −∇2V
′, where V ′ ∈ HV,0,

HE = {u ∈ H(curl,Ω)|n× (u× n) = −∇2V
′ on ∂Ω, V ′ ∈ HV

n× (u× n) = 0 on ∪mk=1 Sk}
HE,0 = {u ∈ H(curl,Ω)|n× (u× n) = −∇2V

′ on ∂Ω, V ′ ∈ HV,0
n× (u× n) = 0 on ∪mk=1 Sk}

HV = {u ∈ H(grad, ∂Ω)| u = V k on Sk, k ∈ Iv,
u = constant(unknown, floating potentials) on Sk, k ∈ Ic }

HV,0 = {u ∈ H(grad, ∂Ω)| u = 0 on Sk, k ∈ Iv
u = constant(unknown, floating potentials) on Sk, k ∈ Ic } .

D.2 Weak formulation (discrete, FEM)

In [CIPL21] we used a simplicial mesh (tetrahedrons in 3D, triangles in 2D), numerical test
functions ~Nk that correspond to edge elements of order (0,1), and degrees of freedom that
represent the complex representations of voltages Uk along the edges. In the case of using
classical boundary conditions, the numerical trial function is approximated as

~E =

Ne∑
j=1

U j ~Nj , (58)

where Ne is the total number of edges in the domain, including its boundary.
In the case of using ECE boundary conditions, the function space where the trial function is

searched for is curl free on the domain boundary, where nodal unknowns Vk and test functions
ϕk are needed. The connection between the approximations inside and on the boundary can be
done at the level at test functions. For instance, since for one element

~N
(e)
k = ϕ

(e)
i ∇ϕ

(e)
j − ϕ

(e)
j ∇ϕ

(e)
i , (59)
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it follows that the numerical trial function when using ECE boundary conditions is approximated
as

~E =
NeInt∑
j=1

U j ~Nj −
NnBnd∑
j=1

V j ∇ϕj (60)

where NeInt is the total number of edges that are strictly inside the domain and NnBnd is the
total number of nodes on the boundary. Some of the nodes that are on the boundary belong
to the same terminal, which must be equipotential. The corresponding terms in (60) have to
be grouped together, and the final expression of numerical solution with respect to the the trial
functions is:

~E =
Neint∑
j=1

U j ~Nj −
NnBndNotTerm∑

j=1

V j ∇ϕj −
m∑
k=1

V k

NnTermK∑
j=1

∇ϕj

 , (61)

where m is the total number of terminals, and NnTermK are the number of nodes that are
covered by terminal k.

D.3 GetDP - function space and formulation

GetDP keywords are in red; comments are in green. Only the black words are user defined.
This is the essence of our contribution (hence the motto on the first page). The rest of the

document was dedicated to its testing and validation.
1 FunctionSpace {
2
3 { Name Hcurl E ; Type Form1 ;
4 BasisFunct ion {
5 { Name se ; NameOfCoef ee ; Function BF Edge ;
6 Support Dom FW ; Entity EdgesOf [ All , Not Sur FW ] ; }
7 { Name sn ; NameOfCoef vn ; Function BF GradNode ;
8 Support Dom FW ; Entity NodesOf [ Sur FW , Not Sur Terminals FWece ] ; }
9 { Name s f ; NameOfCoef v f ; Function BF GradGroupOfNodes ;

10 Support Dom FW ; Entity GroupsOfNodesOf [ Sur Terminals FWece ] ; }
11 }
12 GlobalQuantity {
13 { Name Termina lPotent ia l ; Type Al iasOf ; NameOfCoef v f ; }
14 { Name TerminalCurrent ; Type AssociatedWith ; NameOfCoef v f ; }
15 }
16
17 SubSpace {
18 { Name dv ; NameOfBasisFunction { sn } ; } // Subspace , i t maybe use in equat ions or post−pro
19 }
20
21 Constra int {
22 { NameOfCoef Termina lPotent ia l ; EntityType GroupsOfNodesOf ;
23 NameOfConstraint SetTermina lPotent ia l ; }
24 { NameOfCoef TerminalCurrent ; EntityType GroupsOfNodesOf ;
25 NameOfConstraint SetTerminalCurrent ; }
26 }
27 }
28
29 }
30
31 Formulation {
32
33 { Name FullWave E ece ; Type FemEquation ;
34 Quantity {
35 { Name e ; Type Local ; NameOfSpace Hcurl E ; }
36 { Name dv ; Type Local ; NameOfSpace Hcurl E [ dv ] ; } // Just f o r post−proc e s s i ng i s s u e s
37 { Name V; Type Global ; NameOfSpace Hcurl E [ Termina lPotent ia l ] ; }
38 { Name I ; Type Global ; NameOfSpace Hcurl E [ TerminalCurrent ] ; }
39 }
40 Equation {
41 // \ int D cu r l (\ vec{E}) \ cdot c u r l (\ vec{e }) dv
42 Galerk in { [ nu [ ] ∗ Dof{d e} , {d e} ] ; In Vol FW ; Jacobian Vol ; I n t e g r a t i on Int ; }
43
44 // \ int D j ∗\omega∗(\ sigma + j ∗\omega∗\ e p s i l o n ) \vec{E} \ cdot \vec{e} dv
45 Galerk in { DtDof [ sigma [ ] ∗ Dof{e} , {e} ] ; In Vol FW ; Jacobian Vol ; I n t e g r a t i on Int ; }
46 Galerk in { DtDtDof [ e p s i l o n [ ] ∗ Dof{e} , {e} ] ; In Vol FW ; Jacobian Vol ; I n t e g r a t i on Int ; }
47
48 // a l t e r n a t i v e // j ∗\omega∗sum ( vk Ik ) ; f o r k − cur rent exc i t ed te rmina l s
49 // GlobalTerm {DtDof [ −Dof{ I } , {V} ] ; In SurBCec ; }
50
51 // j ∗\omega∗sum ( vk Ik ) ; f o r k − a l l t e rmina l s so that the cu r r en t s through the te rmina l s w i l l

be computed as we l l
52 GlobalTerm {DtDof [ −Dof{ I } , {V} ] ; In Sur Terminals FWece ; }
53 }
54 }
55
56 }
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Relations (55), (56) and (57) are the key to understand the lines 42-52. Line 42 is the first
term of (56). Line 45 is the second term of (56). Line 46 is the third term of (56). Line 52
corresponds to (57), with a minus, because in GetDP the relation is written as an equality with
zero.

Relation (61) is the key to understand lines 5 - 10. Lines 5 and 6 represent the first sum in
(61) (sum for all the edges inside the domain). Lines 7 and 8 represent the second sum in (61)
(sum for all the nodes on the boundary but which are not on the terminals). Lines 9 and 10
represent the third sum in (61) (the basis functions for the group of nodes of each electrode are
added and a global basis function is thus obtained). The minus signs in (61) are treating in the
pre- and post-processing parts. The user imposes values for some terminal potentials, but inside
the code, immediately, those value are multiplied by -1. Thet GetDP syntax does not allow you
to use minus in lines 7 and 9.

Here it is a more detailed matching between math concepts and objects and GetDP notations.

• Hcurl E = the name of the discrete space for the electric field strength, it was denoted by
HE ;

• Form1 = means that the unknown field is a vector quantity;

• ee = the coefficient in the numerical solution expansion. It is U j in (61), i.e. a voltage
along an edge inside the domain;

• se = the name of the basis function associated to the coefficient ee. It is ~Nj in(61);

• BF Edge = specify the chosen basis function, in this case edge basis function of order 1;

• Dom FW = a group of geometrical entities (volumes, surfaces) defined by the user, in this
case it is the domain Ω and its boundary ∂Ω;

• Sur FW = a group of geometrical entities (surfaces) defined by the user, in this case it is
the domain boundary ∂Ω;

• vn = the coefficient in the numerical solution expansion. It is −V j in (61), i.e. minus the
potential in a node of the boundary;

• sn = the name of the basis function associated to the coefficient vn. It is ∇ϕj in(61);

• BF GradNode = specify the chosen basis function, in this case the gradient of a nodal
basis function of order 1;

• Sur Terminals FWece = a group of geometrical entities (surfaces) defined by the user, in
this case it is the union of the terminal surfaces ∪mk=1Sk;

• vf = the coefficient in the numerical solution expansion. It is −V k in (61), i.e. minus the
potential of a terminal;

• sf = the name of the basis function associated to the coefficient vf. It is
∑NnTermK

j=1 (∇ϕj)
in(61);

• BF GradGroupOfNodes = specify the chosen basis function, in this case the sum of gra-
dient of nodal basis functions of order 1 for all the nodes of a terminal;

• TerminalPotential it is a constrained, defined elsewhere, which imposes values of voltages
for the voltage excited terminals;

• TerminalCurrent it is a constrained, defined elsewhere, which imposes values of currents
for the current excited terminals;
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• unknown e (trial function) is Dof{ e};

• curl applied to the unknown e is Dof{d e};

• Vol FW = a group of geometrical entities (volumes) defined by the user, in this case it is
the domain Ω;

• the test function (denoted with prime in the mathematical formulas) is {e};

• curl applied to the test function is {d e};

• unknown current of voltage excited terminal (trial function) is Dof{ I};

• the test function associated to the unknown potential on the boundary (denoted with
prime in the mathematical formulas) is {V}.

Line 13: TerminalPotential is an alias for vf, and thus it refers to the potential of electrodes.
Line 14: TerminalCurrent is an alias for the variable associated with vf, in this case the

current entering the terminals.
Line 22: some vn values are set according to voltage excited terminals in the Constraints

object in the pro file.
Line 24: some terminals are excited in current. To better understand this, we should look

at the Constraint object, but this is in the .pro file which is problem dependent. For example,
here it is how it looks for a SISO case (e.g. Ishape).

1 Constra int {
2 // ece BC
3 { Name SetTermina lPotent ia l ; Type Assign ; // vo l tage exc i t ed te rmina l s
4 Case {
5 { Region Ground ; Value 0 . ; }
6 I f ( ( Flag Analys isType==0))
7 { Region Terminal ; Value VTerminal1 [ ] ; }
8 EndIf
9 }

10 }
11 { Name SetTerminalCurrent ; Type Assign ; // cur rent exc i t ed te rmina l s
12 Case {
13 I f ( ( Flag Analys isType==1))
14 { Region Terminal ; Value ITerminal1 [ ] / h2Ddepth ; } // here the depth i s needed
15 EndIf
16 }
17 }
18 }

D.4 3D, 2D, 2.5D (AXI)

The function space and formulation described above are valid for all the cases: 3D, 2D and 2D
AXI (also known as 2.5 D).

The difference is solved by the Jacobian object:

1 Jacobian {
2 { Name Vol ;
3 Case {
4 I f ( Flag Axi && modelDim < 3)
5 { Region Al l ; Jacobian VolAxi ; } //VolAxi or VolAxiSqu ??? which one ??
6 Else
7 { Region Al l ; Jacobian Vol ; }
8 EndIf
9 }

10 }
11 { Name Sur ;
12 Case {
13 I f ( Flag Axi && modelDim < 3)
14 { Region Al l ; Jacobian SurAxi ; }
15 Else
16 { Region Al l ; Jacobian Sur ; }
17 EndIf
18 }
19 }
20 }

and by the correct computation of currents in the postprocessing part:
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1 PostProcess ing {
2
3 { Name FW E ece ; NameOfFormulation FullWave E ece ;
4 Quantity {
5 // . . . . . .
6 { Name I ;
7 Value {Term { [ −1∗{ I }∗h2Ddepth ] ; In Sur Terminals FWece ; }}
8 }
9 }

You just have to set the correct ”h2Ddepth” depending on your problem. We did this in the
* data.pro file:

1
2 modelDim = 2 ; //
3 Flag Axi = 1 ; // 1 f o r AXI − i t makes sense only f o r modelDim = 2
4
5 I f ( ( modelDim == 2)&&(Flag Axi == 0) ) // 2D
6 h2Ddepth = h ;
7 E l s e I f ( ( modelDim == 2)&&(Flag Axi == 1) ) // 2D AXI
8 h2Ddepth = 2∗Pi ;
9 Else // 3D

10 h2Ddepth = 1 ;
11 EndIf
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