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Abstract A natural coupling of a circuit with an electromagnetic device is
possible if special boundary conditions, called Electric Circuit Element (ECE),
are used for the electromagnetic field formulation. This contribution shows how
these ECE boundary conditions can be implemented into the 3D-finite element
method for solving coupled full-wave electromagnetic (EM) field-circuit prob-
lems in the frequency domain. The frequency response allows the extraction
of a reduced order model of the analyzed device, accounting for all the EM
field effects. The implementation is based on a weak formulation that uses the
electric field strength E strictly inside the domain and a scalar potential V
defined solely at the boundary. Edge elements for E are used inside the three-
dimensional domain and nodal elements for V are used on its two-dimensional
boundary. The weak formulation is described and implemented in the free en-
vironment Open Numerical Engineering LABoratory (onelab). The validation
is carried out on 3D examples.

Keywords Full wave electromagnetics · Field-circuit coupling · Electric
Circuit Element · ECE Boundary Conditions · Finite Element Method

1 Motivation

Many electromagnetic (EM) devices with distributed parameters and field
effects specific to full-wave (FW) or Magneto-Quasi-Static (MQS) EM field
regime are connected to circuits with lumped parameters (e.g. in measuring
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and control applications). For this, the models of EM devices need boundary
conditions compatible with external circuits (Fig. 1, left).
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Fig. 1 Embedded field/circuit systems. Left: Coupling of electric circuits and EM device
models are naturally ensured by means of terminals. Right: To ensure the coupling, ”node
voltages” (potentials) and electric currents of non-isolated circuits must have a correspon-
dent in the EM device model.

By definition, an isolated electric circuit (i.e. with no connections to other
circuits) has a finite number of components connected to common nodes. Each
node is characterized by its voltage with respect to the ground. A non-isolated
circuit, i.e. a sub-circuit with m terminal nodes has each of these terminals
characterized by a pair of scalar quantities, a current ik entering into the sub-
circuit and a “node voltage” (potential) vk (Fig. 1-right). The power trans-
ferred to it is

P =

m∑
k=1

ikvk =

m−1∑
k=1

ik(vk − vm) =

m−1∑
k=1

ikvk, (1)

if im is expressed according to Kirchhoff current law for a cutset and the
terminal m is connected to ground. This power expression shows that the state
of a m-terminal circuit is characterized by 2(m − 1) independent quantities:
m−1 currents and m−1 voltages. The assumption vm = 0 is not a restriction
for the purpose of this paper, which is stated at the end of Section 2. A natural
coupling of this sub-circuit with an EM device is possible if some connecting
surfaces are defined on the device boundary, for which currents and potentials
are defined, in order to satisfy Kirchhoff relationships and provide the same
transmitted power formula (1) as subcircuits do. The conditions that satisfy
these requirements are the ones proposed in [20], used in [12,17] and referred
to Electric Circuit Element (ECE) boundary conditions.

The ECE boundary conditions, combined with current excited terminals,
are the “realistic boundary conditions” used in [2] to solve eddy current prob-
lems with the finite element method (FEM) using a formulation in H and an
ungauged T − ϕ,ϕ one in [1]. Similar conditions, although with a different
definition for the terminal voltages are proposed in [15] and used for A, V
eddy current formulations [13]. In [7] the coupling of MQS (formulation in H
and formulation in A, V ) FEM models with circuits is done by using electric
global quantities that are naturally coupled with local quantities. The use of
ECE in MQS problems for inductance extraction with an A, V formulation is
discussed in [18].
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Our aim is to use ECE boundary conditions to solve full-wave (FW) prob-
lems with FEM. We have successfully used ECE to model passive on-chip com-
ponents such as resistors, inductors, capacitors, interconnects or RF-MEMS
switches in FW [5], with the Finite Integration Technique as numerical method.
To the best of our knowledge, the ECE conditions are not available in FEM
codes which implement the formulation of microwave ports for FW. Setting
such ports in FW requires complicate modeling e.g. as explained in [8]. Theo-
retical studies exists, e.g. in [12], based on an E, V formulation for the whole
domain. In [4] we used E strictly inside the domain and V solely on the bound-
ary. During the reviewing process of [4], Hiptmair and Ostrowski released a
relevant report published in [14] proving the interest for this subject. In [19]
the same authors propose a FW FEM formulation coupled with circuits, with
a strong emphasis on the stability of the field solution inside the domain at
low frequencies. An EQS formulation is herein used to gauge the proposed
FW formulation in terms of potentials A and ϕ. Our approach in [4] states
the problem in terms of the fields and does not need gauging. We focused only
on coupling field devices with circuits at high frequencies.

This paper is an extended version of [4], where the validation was car-
ried out on 2D examples. The proposed formulation is implemented in the
Open Numerical Engineering LABoratory (onelab) environment, consisting of
the free mesh generator Gmsh [9,10] and the finite element solver GetDP
[6]. Here the validation is carried out on 3D examples. The implementation
and the described test problems will be added to the collection available at
https://gitlab.onelab.info/doc/models.

2 ECE Boundary conditions

Assume a simply connected domain Ω, with a Lipschitz boundary ∂Ω that
includes m disjoint parts Sk, k = 1, 2, . . . ,m (device terminals), so that con-
ditions (ECE1), (ECE2) and (ECE3) are satisfied:
• (ECE1) there is no magnetic coupling with the exterior:

n · ∂B(r,t)
∂t = 0, ∀r ∈ ∂Ω;

• (ECE2) the electric coupling is carried out only through the terminals:
n · (∇×H(r, t)) = 0, ∀r ∈ ∂Ω − ∪mk=1Sk;
• (ECE3) the terminals are equipotential:
n×E(r, t) = 0, ∀r ∈ Sk, k = 1, . . . ,m.
According to Faraday’s law, (ECE3) implies (ECE1) for the terminals, the
inclusion of the terminals in (ECE1) is only kept to emphasize the physical
meaning.

By definition, the currents and potentials of any terminal are:

ik(t) =

∮
∂Sk

H·dl = −
∫
Sk

(
J +

∂D

∂t

)
·nds, vk(t) =

∫
Ck⊂∂Ω

E·dl, (2)

where, in order to ensure conservation, each terminal current is the total cur-
rent (conductive and displacement) and the potential is properly defined as the
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Fig. 2 Electric terminals are disjoint surfaces on
the domain boundary. The non-grounded terminals
can be either voltage excited (its potential is given)
or current excited (its total current is given).
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Fig. 3 Each non-grounded terminal of the EM device with ECE boundary conditions can
be either current excited or voltage excited. Its hybrid transfer matrix is obtained after
computing voltages of the current excited terminals and currents of the voltage excited
terminals in linear problems.

voltage between this terminal and the reference one, along a path Ck included
in the domain boundary. Due to (ECE1) the voltage between two points placed
on the boundary surface is independent of the path of the integration line con-
necting these points, provided that this path is included in the surface. Thus,
the potential on the surface is well defined, although this is not the case for a
general time-varying EM field. Under these conditions, (currents and voltages
satisfy Kirchhoff equations and (1) holds for the EM device, where ik and vk
are given by (2), and thus the ECE boundary conditions are compatible with
the power transferred through its terminals by a multipolar circuit [17,20].

If we assume that the potentials at the terminals are known, then it can
be proved that the problem of EM field analysis described by the Maxwell
equations in a passive linear domain with ECE boundary conditions has a
unique solution in the frequency domain. Consequently, the terminal currents
are output signals and are obtained by solving the field problem [20]. As the
domain is linear, so are the equations, hence the device with ECE conditions
is a linear system, defining a multiple input multiple output (MIMO) type
dynamic system with m−1 inputs and m−1 outputs (Fig. 3). In the frequency
domain, the input-output relationship is:

X = HU, where X =
[
V 1 . . . V n In+1 . . . Im−1

]T
,

H =

[
Z A
B Y

]
, U =

[
I1 . . . In V n+1 . . . V m−1

]T
. (3)

The problem to be solved is: “Find H(f), where f is the working frequency
in a given frequency range of interest, defined by its minimum and maximum
values fmin and fmax f ∈ [fmin, fmax], from the EM field solution.”
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If this hybrid matrix H(f) is known, then the “field” element can be re-
alized with common circuit elements and included in any circuit simulator.
This final step can be carried out with vector fitting (VF), a very efficient
model order reduction procedure which computes a rational approximation of
a given order for the frequency response [11]. Moreover, VF can be included in
a loop that increases the order of the reduced model while choosing new ap-
propriate frequency points for evaluation in an adaptive frequency sampling
strategy (AFS). Thus, for an imposed accuracy, the minimal reduced order
model which describes high frequency field effects is obtained [3].

3 ECE in FEM

a) Strong formulation for E with classical boundary conditions

It is useful to recall the formulation in E with classical boundary conditions,
since the newly proposed formulation inherits part of it. We will assume a
frequency domain formulation, and therefore complex representation of the
vector field quantities will be used and denoted by1E(r) = C(E(r, t)).

The well-known FW Maxwell equations in the frequency domain, for pas-
sive linear media and no internal field sources are: ∇×E = −jωµH, ∇×H =
σE + jωεE, ∇ · (µH) = 0, ∇ · (εE) = ρ, where permittivity ε, permeabil-
ity µ and conductivity σ are positive, space dependent material parameters.
The reluctivity ν = 1/µ might be used instead of µ. The solution of these
equations is unique if in any point of ∂Ω, either exclusively Et or Ht are
known (given). The subscript t indicates the tangential component of the vec-
tor on the surface. It is useful to denote a disjoint partition of the boundary:
∂Ω = SE ∪ SH , SE ∩ SH = ∅, and thus Et : SE → C2, Ht : SH → C2.
The imposed boundary conditions are: n × (E(r) × n) = Et(r), for r ∈ SE
and n× (H(r)× n) = Ht(r), for r ∈ SH . In what follows we will name them
classical boundary conditions. The uniqueness of the field solution can be
proven on the basis of the complex form of the Poynting theorem that gives
the expression of the transmitted power (assuming a linear field domain, with
no moving parts):

−
∮
∂Ω

(Et ×H∗t ) · nds =

∫
Ω

E · J∗ + 2jω

∫
Ω

(
B ·H∗

2
− E ·D∗

2

)
. (4)

The proof assumes that there exist two such fields that satisfy the same bound-
ary conditions. This means that the Poynting theorem in complex form is valid
for the difference field, which satisfies the Maxwell equations (due to linearity)

1 Notation: An underlined symbol represents a complex quantity in order to avoid confu-
sions with the root mean square (rms) value of the quantity it represents. For instance, the
time representation of the potential is V : Ω× (0, T )→ R and its complex representation is
V : Ω → C, where the instantaneous value is V (r, t) =

√
2V (r) sin(ωt+ θ), and its complex

representation is V (r) = V (r) exp(jθ), with V (r) the rms value, j the imaginary unit and
ω = 2πf .
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and zero boundary conditions. This implies that the real part is zero which
results in zero difference electric field (conductivity of the domain is assumed
non-zero everywhere) and the imaginary part is zero which amounts to zero
difference magnetic field.

The second order equation satisfied by E, obtained from Maxwell equations
by elimination of H is a curl-curl type PDE:

∇× (ν∇×E) + jω(σ + jωε)E = 0. (5)

This equation has an unique solution when the following boundary conditions
are given: n× (E(r)× n) = Et on SE and (∇×E)t = jµHt/ω on SH .

b) Weak formulation for E with classical boundary conditions

In general, solving (5) implies a numerical approach, e.g. FEM, which is
based on weak formulations. The needed functionals are obtained by projecting
(5) onto a set of appropriate test functions E′, then integrating by parts and
applying Gauss-Ostrogradski formula:∫
Ω

[
(ν∇×E) · (∇×E′) + jω(σ + jωε)E ·E′

]
dx = −

∮
∂Ω

[
(ν∇×E)×E′

]
·n ds

Replacing the expression of the magnetic field strength in the right hand side
we get∫

Ω

[
(ν∇×E) · (∇×E′) + jω(σ + jωε)E ·E′

]
dx = jω

∮
∂Ω

(
H×E′

)
· nds.

(6)
With classical boundary conditions, the integral in the right hand side is∮

∂Ω

(
H×E′

)
· n ds =

∫
SE

(
E′t × n

)
·Hds+

∫
SH

(n×Ht) ·E
′ ds. (7)

Et are essential boundary conditions that is why the test functions are chosen
so that E′t is zero on SE . Thus, the weak equation for the trial functions E is:∫

Ω

[
(ν∇×E) · (∇×E′) + jω(σ + jωε)E ·E′

]
dx = jω

∫
SH

(n×Ht) ·E
′ ds.

(8)
The boundary conditions Ht = n × (H × n) = −n × (∇× E × n)/(jωµ) are
natural, they appear in the functional equation.

Finally, the weak formulation in E with classical boundary conditions is:
Find E in H, such that

a(E,E′) = f(E′), ∀E′ ∈ H0, (9)
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where

a(E,E′) =

∫
Ω

[
(ν∇×E) · (∇×E′) + jω(σ + jωε)E ·E′

]
dx, (10)

f(E′) = jω

∫
SH

(n×Ht) ·E
′ ds, (11)

H = {u ∈ H(curl, Ω)|n× (u× n) = Et on SE} , (12)

H0 = {u ∈ H(curl, Ω)|n× (u× n) = 0 on SE} (13)

are the curl-conform Sobolev spaces.

c) Weak formulation for E with ECE boundary conditions

If we use ECE boundary conditions, the unknowns are the electric field
inside the domain and an electric scalar potential solely defined on ∂Ω. That
is why the formulation is still named E, V , but is different from other formu-
lations, such as the E, V in [12] where V is defined also inside the domain. An
E, V interpretation of the ECE boundary conditions (ECE 1,2,3) is:
• (ECE1b)

∮
Γ
E · dl = 0, ∀Γ ∈ ∂Ω, is a closed curve;

• (ECE2b) n ·E(r) = 0, ∀r ∈ ∂Ω − ∪mk=1Sk;
• (ECE3b) Et(r) = 0 ∀r ∈ Sk, k = 1, . . . ,m.
From (ECE1b) an electric scalar potential V can be defined on the boundary
∂Ω, such that Et = −∇2V . Condition (ECE3b) requires that the electric ter-
minals are equipotential. For uniqueness reasons, at least one terminal has to
be fixed to a value. Without lack of generality we can assume it is grounded in
what follows. For the other terminals the uniqueness implies that, exclusively,
either their voltages or currents are known.

Using (5) we get the weak equation for E:

∫
Ω

[
(ν∇×E) · (∇×E′) + jω(σ + jωε)E ·E′

]
dx = jω

∑
k∈Ic

V ′kIk, (14)

where Ic is the set of indices of current excited terminals. Similarly, we will
denote by Iv is the set of indices of voltage excited terminals.

In [4] a separate equation for the the electric potential on the boundary
was proposed. However, the coupling between the unknowns strictly inside
the domain and those on the boundary can be done at the level of the basis
functions, as follows.

Find E ∈ HE and V ∈ HV , so that

a(E,E′) = f(E′), ∀E′ ∈ HE,0; (15)∮
∂Sk

H · dl = Ik, k ∈ Ic; Et = −∇2V, on ∂Ω,



8 Gabriela Ciuprina et al.

where

a(E,E′) =

∫
Ω

[
(ν∇×E) · (∇×E′) + jω(σ + jωε)E ·E′

]
dx, (16)

f(E′) = jω
∑
k∈Ic

V ′kIk; (17)

and E′t = −∇2V
′, where V ′ ∈ HV,0,

HE = {u ∈ H(curl, Ω)|n× (u× n) = −∇2V
′ on ∂Ω, V ′ ∈ HV

n× (u× n) = 0 on ∪mk=1 Sk}
HE,0 = {u ∈ H(curl, Ω)|n× (u× n) = −∇2V

′ on ∂Ω, V ′ ∈ HV,0
n× (u× n) = 0 on ∪mk=1 Sk}

HV = {u ∈ H(grad, ∂Ω)| u = V k on Sk, k ∈ Iv,
u = constant(unknown, floating potentials) on Sk, k ∈ Ic }

HV,0 = {u ∈ H(grad, ∂Ω)| u = 0 on Sk, k ∈ Iv
u = constant(unknown, floating potentials) on Sk, k ∈ Ic } .

d) Discrete formulation in E

In [4] we used a simplicial mesh (tetrahedrons in 3D, triangles in 2D),
numerical test functions Nk that correspond to edge elements of order (0,1),
and degrees of freedom that represent the complex representations of voltages
Uk along the edges. In the case of using classical boundary conditions, the
numerical trial function is approximated as

E =

Ne∑
j=1

U jNj , (18)

where Ne is the total number of edges in the domain, including its boundary.
In the case of using ECE boundary conditions, the function space where

the trial function is searched for is curl free on the domain boundary, where
nodal unknowns Vk and test functions ϕk are needed. The connection between
the approximations inside and on the boundary can be done at the level at
test functions. For instance, since for one element

N
(e)
k = ϕ

(e)
i ∇ϕ

(e)
j − ϕ

(e)
j ∇ϕ

(e)
i , (19)

it follows that the numerical trial function when using ECE boundary condi-
tions is approximated as

E =

NeInt∑
j=1

U jNj −
NnBnd∑
j=1

V j ∇ϕj (20)

where NeInt is the total number of edges that are strictly inside the domain and
NnBnd is the total number of nodes on the boundary. Some of the nodes that
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are on the boundary belong to the same terminal, which must be equipotential.
The corresponding terms in (20) have to be grouped together, and the final
expression of numerical solution with respect to the the trial functions is:

E =

Neint∑
j=1

U jNj −
NnBndNotTerm∑

j=1

V j ∇ϕj −
m∑
k=1

V k NnTermK∑
j=1

∇ϕj

 , (21)

where m is the total number of terminals, and NnTermK are the number of
nodes that are covered by terminal k.

The discrete formulation (15)-(17) was implemented in getdp [6]. The most
relevant one for the formulations above are: the discrete function spaces (18)
for classical boundary conditions and (21) for ECE; the weak equation (9)
or (15), with the same bilinear functional (10) or (16), but with the linear
functional (11) for classical boundary conditions (the tangential component
of the magnetic field strength is a natural boundary condition) and (17) for
ECE (currents of current excited terminals are natural boundary conditions);
constraints - essential boundary conditions - tangential component of the elec-
tric field in the case of classical boundary conditions, from which appropriate
voltages along edges on the boundary are computed, and potentials of voltage
excited terminals in the case of ECE boundary conditions.

4 Numerical results

The results in [4] were obtained with an in-house code for two simple though
relevant academic 2D test problems: a homogeneous rectangular domain corre-
sponding to a single input single output system (m = 2) and a non-homogeneous
rectangular domain corresponding to a multiple input multiple output system
(m = 3). Two 3D test cases are considered herein. The new implementation
has been done in onelab, using first order tetrahedral elements.

The first test is a cylindrical domain with radius a and length l, having
linear and homogeneous material properties2 (ε, µ, σ). Its ends are two termi-
nals, one grounded and the other excited either in current or voltage. This
configuration has the advantage that a formulation with classical boundary
conditions3 is equivalent to a formulation with ECE boundary conditions4.
The classical boundary conditions formulation admits an analytic solution in
terms of Bessel functions for the current excitation case. This is used to val-
idate the numerical solution of FEM, in 3D-FW regime with ECE boundary
conditions.

2 There is no airbox in this test, consequently the computed inductance is the interior
one.

3 Et = 0 on the ends, Ht = I/(2πa)uθ on the lateral surface, uθ azimuth direction, I = 1.
4 Current excitation with I = 1 A, the lateral surface of the cylinder being a non-terminal

ECE surface
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Fig. 4 shows a quantitative validation in terms of the associated frequency-
dependent resistance (R) and inductance (L), the relative errors (vs. the an-
alytic exact solution) are less than 2% for the whole frequency range when
using a mesh with 2 elements per skin depth. The figure includes also the re-
sults obtained with the formulation proposed in [12] that uses V defined in the
whole domain. The two numerical solutions overlap (up to machine precision),
but the computational effort for a formulation with V inside is greater, since
the number of DoFs increases with the number of inner nodes. For instance at
60 GHz, if 2 elements per skin depth are imposed, then a mesh with 128219
elements is generated, leading to 12659 and 23441 unknowns for V when it is
defined only on the boundary, or in the whole domain, respectively.
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Fig. 4 Cylinder benchmark: Quantitative validation of the implementation for a 3D case
with analytic solution, extracted resistance R (left) and inductance L (right) versus the
frequency. Data used: radius a = 2.5µm, length l = 10µm, conductivity σ = 6.6 · 107 S/m,
µr = 1, εr = 1. These results illustrate also the importance of the mesh adaptation to the
field solution.

The second benchmark is the LC 3D field device proposed in [19]. Not only
this test was solved with FEM5, in FW regime with ECE boundary conditions,
but the solving was embedded into a model order reduction procedure based
on Vector Fitting (VF) [11] and Adaptive Frequency Sampling (AFS) [3].

Fig. 5 shows a part of the surface mesh and the color map of the real part of
the potential on the boundary, as well as a color map on a cut of the rms value
of the the electric field strength for f = 1 kHz. The mesh used has 161485 first
order tetrahedral elements leading to 187560 DoFs. Note that in [19] a mesh
with 1.12 million elements was used to solve this problem.

Fig. 6 shows the results of the model extraction using FEM for field evalu-
ation combined with model reduction with Vector Fitting (VF) and Adaptive
Frequency Sampling (AFS). The reference result corresponds to a series con-
nection of three lumped elements: Rref,DC = 7.2 mΩ, Lref = 10.1 mH and
Cref = 33.4 mF, which fits very well to the field solution [19], especially if in-
stead or the DC value of resistance Rref = 24 mΩ is used, which considers the

5 The benchmark files are provided at https://gitlab.onelab.info/doc/models. Note that
the LC geometry is given in a STEP file format as well as in a native Gmsh language that
allows straightforward parametric studies, essential for parametric model order reduction
methodologies.
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Fig. 5 LC benchmark, f = 1 kHz: a part of the FEM mesh and potential (real part) on
the boundary (left); rms value of the electric field strength (right).
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Fig. 6 LC benchmark, models of the 3D field device analyzed alone: admittance (modulus
and phase) obtained by the reference lumped model from [19] (blue); the 7 AFS points which
used onelab for evaluation (circles); extracted reduced model of order 4 (transfer function
obtained by VF) (dotted red); extracted RLC model (dotted green). Note: fmin = 1 kHz,
fmax = 80 kHz for the AFS algorithm.

eddy-current effects effect at the resonance frequency6. We have set the AFS
local relative error to 0.01. A reduced model of order 4 was obtained, needing
only 7 frequencies evaluations in FEM to achieve this error. The evaluation
of the transfer function (TF) in the frequency range shows that the resonance
frequency is at 8889 kHz, which is 2.5% different from the reference resonance
frequency. Moreover, a new strictly proper rational approximation of order 2
was obtained, starting from a set of 100 points evaluated for the reduced model
of order 4. From the two poles and residuals, the values of a RLC series circuit
were extracted: Rextr = 26.6 mΩ; Lextr = 9.18 mH; Cextr = 33.8 mF, which
correspond to relative errors versus the reference circuit of 10.8 %, 9.1% and
1.1%, respectively. As in the previous cylinder benchmark, better numerical
results are expected for a refined mesh. The circuit simulation is also shown
in Fig. 6.

Fig. 7 shows the results obtained when connecting the extracted reduced
models to the outside circuit consisting of a resistance Rext = 450 mΩ from

6 From the inductance extraction point of view, this RLC test problem is not proper, as
the extracted inductance depends on the size of the airbox and tends to infinity if the airbox
goes to infinity. Indeed, the airbox boundary is the support of the current return path. This
issue is inherent to the model and independent of the boundary conditions. However, we
have adopted the same airbox (size and shape) as in the reference paper [19], we can thus
extract and compare the values to those in the reference paper.
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[19] and an ideal voltage source having an imposed voltage of 1 V (rms value).
The results are extremely good, especially considering that the mesh we used is
about seven times coarser than the mesh in the reference paper. No instabilities
were noticed at terminal values for frequencies lower than 1 kHz, down to 50
Hz, even if the conductivity in the dielectric domain is zero. The external
resistance which is relatively high makes that the accuracy of the extracted
resistance of the LC device have no relevance.
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Fig. 7 LC benchmark, models of the 3D field device connected to the external circuit:
admittance (modulus and phase) obtained by the reference lumped model from [19], AFS
points (displayed here only to recall their position, no field solution is needed here), reduced
model of order 4 (transfer function of VF), extracted RLC model.

5 Conclusions

The main advantage of ECE BC for the Maxwell equations is that the ports
are well defined, without ambiguity, and compatible with the circuit terminals,
even for RF devices. There is no restriction on the field regime (DC to full wave,
even including nonlinear media). For MIMO systems, the hybrid excitation is
obtained in a natural way. It is important to be aware that ECE BC for
parameter extraction can be applied only to a simply connected subdomain,
obtained after partitioning the domain corresponding to a whole system in
parts that do not overlap or do not have holes.

This paper proposed a FEM formulation for ECE, which E strictly inside
the domain and V on the boundary. The degrees of freedom are the electric
voltages on the inner edges and the potentials of the floating nodes on the
boundary (nodes outside terminals and current excited terminals). The paper
presents its theoretical background (weak formulation) and its implementation
details in the onelab environment. This new approach provides the same re-
sults but is more data-efficient than using internal node-potentials as described
in [12]. The simulated frequency response allows extracting of a reduced order
model of the analyzed device, accounting for all the EM field effects [3].

The formulation was validated for two 3D test problems, the frequency
responses being saved in Touchstone file format. The numerical experiments
showed that besides fundamental physical and mathematical aspects related
to the weak formulation and functional framework, the choice of the mesh and
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its adaptation to the solution are key to ensure a highly accurate of the numer-
ical model. Besides the appropriate choice of the field regime and boundary
conditions which are apriori model order reduction (MOR) techniques, and
compact “equivalent” circuit extraction which is an aposteriori MOR tech-
nique, the choice of an optimal mesh is an “on the fly” MOR technique. Ef-
fective methodologies for solving real-life field problems should use MOR at
every modeling step [16].
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