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Abstract A natural coupling of a circuit with an electromagnetic (EM) device is
possible if special boundary conditions, called Electric Circuit Element (ECE), are
used for the EM field formulation. This contribution shows how these ECE bound-
ary conditions can be implemented into the finite element method for the solving of
coupled full-wave EM field-circuit problems in the frequency domain. The imple-
mentation is based on a weak formulation that uses the electric field strength strictly
inside the domain and a scalar potential defined solely on the boundary. Edge el-
ements are used inside the three-dimensional domain and nodal elements are used
on its two-dimensional boundary surface. The weak formulation is given and its
discrete form is validated on a 2D example, with known analytic solution.

1 Motivation

Many EM devices with distributed parameters and field effects specific to full-wave
(FW) or Magneto-Quasi-Static (MQS) EM field regime are connected to circuits
with lumped parameters (e.g. in measuring and control applications). For this, the
EM devices need boundary conditions compatible with external circuits (Fig. 1,left).

By definition, an isolated electric circuit has a finite number of components con-
nected to common terminals. Each terminal is characterized by its voltage with re-
spect to the ground. A non-isolated circuit, i.e. a sub-circuit with m terminal nodes
has each of these terminals characterized by a pair of scalar quantities, a current ik
entering into the sub-circuit and a ”node voltage” (potential) vk (Fig. 1-right). The
power transferred to it is
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Fig. 1 Left: Coupling of electric circuits and EM device models are naturally ensured by means
of terminals. Right: To ensure the coupling, ”node voltages” (potentials) and electric currents of
non-isolated circuits must have a correspondent in the EM device model.

P =
m

∑
k=1

ikvk =
m−1

∑
k=1

ik(vk− vm) =
m−1

∑
k=1

ikvk (1)

if im is expressed according to Kirchhoff current law for a cutset and the terminal m
is connected to ground. This power expression shows that the state of a m-terminal
circuit is characterized by 2(m−1) independent quantities: m−1 currents and m−1
voltages. The assumption vm = 0 is not a restriction for the purpose of this paper,
which is stated at the end of Section 2. A natural coupling of this sub-circuit with
an EM device is possible if some connecting surfaces are defined on the device’s
boundary, for which currents and potentials are defined, in order to satisfy Kirchhoff
relationships and provide the same transmitted power formula (1) as subcircuits do.
The conditions that satisfy these requirements are the ones proposed in [10], used
in [4, 8] and called Electric Circuit Element (ECE) boundary conditions.

The ECE boundary conditions, combined with current excited terminals, are the
”realistic boundary conditions” used in [2] to solve eddy current problems with the
finite element method (FEM) using a formulation in H and an ungauged T−ϕ,ϕ
one in [1]. Similar conditions, although with a different definition for the terminal
voltages are proposed in [6] and used for A,V eddy current formulations [5].

The use of ECE in MQS problems for inductance extraction with an A,V for-
mulation is discussed in [9]. Our aim is to use ECE boundary conditions to solve
full-wave (FW) problems with FEM. We have successfully used ECE to model pas-
sive on-chip components such as resistors, inductors, capacitors, interconnects or
RF-MEMS switches in FW [3], with the Finite Integration Technique as numerical
method. According to our knowledge, the ECE conditions are not available in FEM
codes which implement the formulation of microwave ports for FW. Theoretical
studies exists, e.g. in [4], based on an E,V formulation for the whole domain. In
this paper we use E strictly inside the domain and V solely on the boundary. Dur-
ing the reviewing process of this paper, Hiptmair and Ostrowski released a relevant
report [7], proving the interest for this subject.

2 ECE Boundary conditions

Assume a simply connected domain Ω , with a Lipschitz boundary ∂Ω that includes
m disjoint parts Sk, k = 1,2, . . . ,m (device’s terminals), so that conditions (ECE1),
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(ECE2) and (ECE3) are satisfied:
• (ECE1) there is no magnetic coupling with the exterior: n · ∂B(r,t)

∂ t = 0, ∀r∈ ∂Ω ;
• (ECE2) the electric coupling is carried out only through the terminals:
n · (∇×H(r, t)) = 0, ∀r ∈ ∂Ω −∪m

k=1Sk;
• (ECE3) the terminals are equipotential: n×E(r, t) = 0, ∀r ∈ Sk, k = 1, . . . ,m.
According to Faraday’s law, (ECE3) implies (ECE1) for the terminals, the inclusion
of the terminals in (ECE1) is kept only for emphasizing the physical meaning.

Fig. 2 Electric terminals
are disjoint surfaces on the
domain’s boundary. The non-
grounded terminals can be
either voltage excited (its
potential is given) or current
excited (its total current is
given).
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By definition, the currents and potentials of any terminal are:

ik(t) =
∮

∂Sk

H ·dl =−
∫

Sk

(
J+

∂D
∂ t

)
·nds, vk(t) =

∫
Ck⊂∂Ω

E ·dl, (2)

where, in order to ensure conservation, each terminal current is the total current
(conductive and displacement) and the potential is properly defined as the voltage
between this terminal and the reference one, along a path Ck included in the domain
boundary. Due to (ECE1) the voltage between two points placed on the boundary
surface is independent of the path of the integration line connecting these points,
provided that this path is included in the surface. Thus, the potential on the surface
is well defined, although this is not the case in a general time-varying EM field.
Under these conditions, (1) holds for the EM device, where ik and vk are given by
(2), and thus the ECE boundary conditions are perfectly compatible with the power
transferred through its terminals by a multipolar circuit [8, 10].

If we assume that the terminals have known potentials, then it can be proved that
the problem of EM field analysis in a linear domain with ECE boundary conditions
has a unique solution. Consequently, the terminal currents are output signals and are
obtained by solving the field problem [10]. As the domain is linear, so are the equa-
tions, hence the device with ECE conditions is a linear system, defining a multiple
input multiple output (MIMO) type dynamic system with m− 1 inputs and m− 1
outputs (Fig. 3).

In the frequency domain, the input-output relationship is expressed as:

[
V 1 . . . V n In+1 . . . Im−1

]T
=

[
Z A
B Y

][
I1 . . . In V n+1 . . . V m−1

]T
. (3)
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Fig. 3 Each non-grounded terminal of the EM device with ECE boundary conditions can be either
current excited or voltage excited. Its hybrid transfer matrix is obtained after computing voltages
of the current excited terminals and currents of the voltage excited terminals in linear problems.

The problem to be solved is: ”Find
[

Z( f ) A( f )
B( f ) Y( f )

]
, where f is the frequency in a

given frequency range of interest, defined by its minimum and maximum values
fmin and fmax f ∈ [ fmin, fmax], from the EM field solution.” If this hybrid matrix is
known, then the ”field” element can be realized with common circuit elements and
included in any circuit simulator.

3 ECE in FEM

It is useful to recall the formulation in E with classical boundary conditions, since
the newly proposed formulation inherits a part of it.

Strong formulation of PDE for E with classical boundary conditions.
The well known FW Maxwell equations in the frequency domain, for linear me-
dia and no internal field sources are: ∇× E = −jωµH, ∇×H = σE + jωεE,
∇ · (µH) = 0, ∇ · (εE) = ρ , where permittivity ε , permeability µ and conductiv-
ity σ are positive, space dependent material parameters. The reluctivity ν = 1/µ

might be used instead of µ . The solution of these equations is unique if in any point
of ∂Ω , either exclusively Et or Ht are known (given). The subscript t indicates the
tangential component of the vector on the surface. It is useful to denote a disjoint
partition of the boundary: ∂Ω = SE ∪ SH , SE ∩ SH = /0, and thus Et : SE → C2,
Ht : SH → C2. The imposed boundary conditions are: Et(r) = n× (E(r)×n), for
r ∈ SE and Ht(r) = n× (H(r)×n), for r ∈ SH . In what follows we will name them
classical boundary conditions. The uniqueness of the field solution can be proven
on the basis of the complex form of the Poynting’s theorem that gives the expression
of the transmitted power (assuming a linear field domain, with no moving parts):

−
∮

∂Ω

(Et ×H∗t ) ·nds =
∫

Ω

E ·J∗+2jω
∫

Ω

(
B ·H∗

2
− E ·D∗

2

)
. (4)

The proof assumes that there exist two such fields that satisfy the same bound-
ary conditions. This means that the Poynting theorem in complex form is valid for
the difference field, which satisfies Maxwell’s equations (due to linearity) and zero
boundary conditions. This implies that the real part is zero which conduces to zero
difference electric field (conductivity of the domain is assumed non-zero every-
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where) and the imaginary part is zero with conduces to zero difference magnetic
field.

The second order equation is:

∇× (ν∇×E)+ jω(σ + jωε)E = 0. (5)

Weak formulation in E with classical boundary conditions.
In general, solving of (5) implies a numerical approach, e.g. FEM, which is based on
weak formulations. The needed functionals result by projecting (5) onto a set of test
functions E′, then integrating by parts and applying Gauss-Ostrogradski formula:∫

Ω

[
(ν∇×E) · (∇×E′)+ jω(σ + jωε)E ·E′

]
dx =−

∮
∂Ω

[
(ν∇×E)×E′

]
·nds

Replacing the expression of the magnetic field strength in the right hand side we get∫
Ω

[
(ν∇×E) · (∇×E′)+ jω(σ + jωε)E ·E′

]
dx = jω

∮
∂Ω

(
H×E′

)
·nds. (6)

With classical boundary conditions, the right hand side is equal to
∫

SE
(E′t ×n) ·

Hds+
∫

SH
(n×Ht) ·E′ ds. Et are essential boundary conditions that is why the test

functions are chosen so that E′t is zero on SE . Thus, the weak equation for the trial
functions E is:∫

Ω

[
(ν∇×E) · (∇×E′)+ jω(σ + jωε)E ·E′

]
dx = jω

∫
SH

(n×Ht) ·E′ ds. (7)

The boundary conditions Ht are natural, they appear in the functional equation.
In conclusion, the weak formulation in E with classical boundary conditions is:

Find E in H , such that a(E,E′) = f (E′), ∀E′ ∈H0 where

a((E,E′) =
∫

Ω

[
(ν∇×E) · (∇×E′)+ jω(σ + jωε)E ·E′

]
dx, (8)

f (E′) = jω
∫

SH

(n×Ht) ·E′ ds, (9)

H = {u ∈H (curl,Ω)|n× (u×n) = Et on SE} , (10)
H0 = {u ∈H (curl,Ω)|n× (u×n) = 0 SE} . (11)

Discrete formulation in E with classical boundary conditions.
Assume a simplicial mesh (tetrahedrons in 3D, triangles in 2D), numerical test func-
tions Nk that correspond to edge elements of order (0,1), and degrees of freedom that
represent the complex representations of voltages Uk along the edges. The numer-
ical solution is approximated as E = ∑

Ne
j=1 U jN j, where Ne is the total number of

edges in the domain. For any cell, the sum involves 6 terms in 3D and 3 terms in
2D. By substituting the approximation of the numerical solution in (6), choosing the
test function E′ = Ni and rearranging the sums we obtain a relationship that reveals
how the matrices assembling has to be done for all i = 1, . . . ,Ne:
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Ne

∑
j=1

{∫
Ω

[(ν∇×N j) · (∇×Ni)+ jω(σ + jωε)N j ·Ni] dx
}

U j = jω
∫

SH

(n×Ht) ·Ni ds.

(12)

The initial assembling is carried out for all the edges in the domain. The next step
refers to the boundary conditions. Assume that the edges were numbered in the
following order: first - the inner edges, second - the edges on the boundary SH and
finally, the edges on the boundary SE . This leads to the following partitioning:Ain−in Ain−SH Ain−SE

ASH−in ASH−SH ASH−SE
ASE−in ASE−SH ASE−SE

Uin
USH
USE

=

0
bSH
0

 (13)

The group of equations that correspond to edges on the SE boundary is deleted and
the essential boundary conditions Et are translated into imposed values of electric
voltages along edges on the SE boundary. The system to be solved is[

Ain−in Ain−SH
ASH−in ASH−SH

][
Uin
USH

]
=

[
0
bSH

]
−
[

Ain−SE
ASH−SE

][
USE

]
, (14)

the coefficient matrix being symmetric and positive defined.
Weak formulation in E,V with ECE boundary conditions.

If we use ECE boundary conditions, the unknowns are the electric field inside the
domain and an electric scalar potential solely defined on ∂Ω . That is why the for-
mulation is still named E,V , but is different from other formulations, such as the
E,V in [4] where V is defined also inside the domain. An E,V interpretation of the
ECE boundary conditions (ECE 1,2,3)) is:
• (ECE1b)

∮
Γ

E ·dl = 0, ∀Γ ∈ ∂Ω ;
• (ECE2b) n ·E(r) = 0, ∀r ∈ ∂Ω −∪m

k=1Sk;
• (ECE3b) Et(r) = 0 ∀r ∈ Sk, k = 1, . . . ,m.
From (ECE1b) an electric scalar potential V can be defined on the boundary ∂Ω ,
such that Et = −∇2V . Condition (ECE3b) requires that the electric terminals are
equipotential. For uniqueness reasons, one terminal has to be defined by any value.
Without lack of generality we can assume it is grounded in what follows. For the
other terminals the uniqueness implies that, exclusively, either their voltages or cur-
rents are known.

Using (5) we get the weak equation for E:∫
Ω

[
(ν∇×E) · (∇×E′)+ jω(σ + jωε)E ·E′

]
dx = jω ∑

k∈Ic

V ′kIk, (15)

where Ic is the set of indices of current excited terminals. Similarly, we will denote
by Iv is the set of indices of voltage excited terminals. We need an equation for the
electric potential on the boundary, as well. Let’s denote the normal component of
the total current density in any point on the boundary as Jn

not
= (∇×H) ·n. We will

project Jn onto a set of scalar test functions V ′:
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(∇×H) ·nV ′ ds =
∮

∂Ω

JnV ′ ds
(ECE2)
=

m

∑
k=1

∫
Sk

JnV ′ ds = ∑
k∈Ic

V ′kIk

The integrand of the left hand side can be further computed by using the integra-
tion by parts formula that involves the surface differential operators and the substi-
tution of the magnetic field with its expression with respect to the electric field, as it
follows from Faraday’s law:∮

∂Ω

(∇×H) ·nV ′ ds =
∮

∂Ω

V ′n · curlHds def
=
∮

∂Ω

V ′ div2 (H)ds =

=
∫

∂ (∂Ω)
V ′(n×H)ds−

∮
∂Ω

H ·grad2V ′ ds =
∮

∂Ω

ν

jω
curlE ·grad2V ′ ds

Consequently it follows that the weak form of the equation on the boundary is∮
∂Ω

(ν∇×E) ·∇2V ′ ds = jω ∑
k∈Ic

V ′k Ik (16)

Finally, we get the weak formulation in E,V with ECE boundary conditions.

Find E ∈HE , V ∈HV , such that

a(E,E′) = f (E′), ∀E′ ∈HE,0; b(E,V ′) = g(V ′), ∀V ′ ∈HV,0∮
∂Sk

H ·dl = Ik, k ∈Ic; Et =−∇2V, on ∂Ω ,

where

a(E,E′) =
∫

Ω

[
(ν∇×E) · (∇×E′)+ jω(σ + jωε)E ·E′

]
dx, f (E′) = jω ∑

k∈Ic

V ′kIk;

b(E,V ′) =
∮

∂Ω

(ν∇×E) ·∇2V ′ ds, g(V ′) = jω ∑
k∈Ic

V ′kIk;

where E′t =−∇2V ′.

HE = {u ∈H (curl,Ω)|n× (u×n) =−∇2V ′ on ∂Ω , V ′ ∈HV

n× (u×n) = 0 on ∪m
k=1 Sk}

HE,0 = {u ∈H (curl,Ω)|n× (u×n) =−∇2V ′ on ∂Ω , V ′ ∈HV,0

n× (u×n) = 0 on ∪m
k=1 Sk}

HV = {u ∈H (grad,∂Ω)| u =V k on Sk, k ∈Iv,

u = constant(unkown) on Sk, k ∈Ic }

HV,0 = {u ∈H (grad,∂Ω)| u = 0 on Sk, k ∈Iv

u = constant(unkown) on Sk, k ∈Ic }
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Note: We have investigated two other formulations for the boundary equations
for which b(E,V ′) = 0. In one version b(E,V ′) =

∮
∂Ω

(σ + jωε)(∇2V ) ·(∇2V ′)ds+∮
∂Ω

∂

∂n [(σ + jωε)E ·n]V ′ ds and another version is b(E,V ′) =
∮

∂Ω
(σ + jωε)n ·

EV ′ ds. Due to lack of space we will not present them here.
Formulation in E,V with ECE boundary conditions - algorithm in FEM.

Step 1: We start with the discrete form of classical BC, given by (14), written for

all the edges)
[

Au,u Au,ub
Aub,u Aub,ub

][
u
ub

]
=

[
0
bb

]
. Only the first block row of equations,

corresponding to the inner edges, is kept.
Step 2: Write the discrete form of the equation (16) on the 2D surface boundary
mesh. ∑

Ne
j=1

[∮
∂Ω

(ν∇×N j) · (∇2ϕi
′)ds

]
U j = jωIi, where ϕi

′ is the nodal element
i. This is written for all the nodes on the boundary and will be placed together with

the discrete equation obtained at step 1:
[

Au,u Au,ub
AVb,u AVb,ub

][
u
ub

]
=

[
0
b′b

]
.

Step 3: On the boundary, the variables are changed, from electric voltages to
electric potentials, by expressing ub as potential differences. The system becomes[

Au,u Au,Vb
AVb,u AVb,Vb

][
u
Vb

]
=

[
0
b′b

]
.

Step 4: Finally, Vb has to be split in three (V-for nodes that are not on terminals,
Vt,c-voltages of current excited terminals, Vt,v- voltages of voltage excited termi-
nals), in order to impose the rest of the natural conditions (potentials for voltage
excited, or currents for current excited terminals): Finally, the system to solve isAu,u Au,V Au,Vt,c

AV,u AV,V AV,Vt,c

AVt,c,u AVt,c,V AVt,c,Vt,c

u
V
Vt,c

=

0
0
jωIt,c

−
Au,Vt,v

AV,Vt,v

AVt,c,Vt,v

[Vt,v
]
.

After solving, we get the unknown potentials V and Vt,c. The currents through the
terminals in Iv can be computed as a postprocessing step.

3.1 Numerical results

Fig. 4 shows a quantitative validation for a 2D simple case, with two terminals and
with analytical solution. It is a single input single output (SISO) system, both current
and voltage excitations give accurate results. The domain is a brick that occupies
the space x ∈ [−a,a], y ∈ [0, l] and x ∈ [0,h]. One excited terminal (in voltage or in
current) is on the z= 0 boundary and the grounded terminal is on the z= h boundary.
The material inside is assumed homogeneous with ε,µ,σ . The analytic solution
can be obtained by solving the Helmholtz equations and considering the current
excited terminal (I). The complex power absorbed by this domain is P = 2Ey H∗z lh,
where Ey = γ/(σ + jωε)cosh(γa)/sinh(γa) I/(2h) and Hz = I/(2h). The extracted
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complex impedance is Z = P/|I|2 and its components shown in Fig. 4 are R = realP
and L = realP/ω for a = 2.5 µm, l = 10 µm, h = 10 µm, σ = 6.6 ·107 S/m, µ = µ0,
ε = ε0, fmin = 0.01GHz, fmax = 100GHz.

Fig. 5 shows a qualitative validation for a MIMO test. The rectangular domain
is occupied by a T-shape conductor of high conductivity, having 3 terminals, out of
which the one at the right hand side of the figure is grounded.
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Fig. 4 Quantitative validation of the implementation for a 2D case with analytical solution. The
problem is a rectangle with two opposite terminals, consequently the system is SISO. Both voltage
and current excitations lead to relative errors less than 2% for the whole frequency range.

4 Conclusions

The advantages of ECE BC for Maxwell equations are that the ports are clearly and
well defined, without ambiguity, fully compatible with the circuit terminals. There
is no restriction on the field regime (full wave, nonlinear). For MIMO systems, the
hybrid excitation is obtained in a natural way. This paper proposed a FEM algorithm
for ECE, which E strictly inside the domain and V on the boundary. The degrees of
freedom are the electric voltages on the inner edges and the potentials of the floating
nodes on the boundary (nodes outside terminals and current excited terminals). Our
next research will compare the 3 mentioned formulations.
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Fig. 5 Qualitative validation for a 2D case, MIMO (3 terminals), hybrid excitation (one terminal
grounded, one is voltage excited and one is current excited).
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