
– 1 – 
 

Last revised : 27.08.2009 
 

 
 
 
 
 
 
 
 
 

MATRIX FITTING TOOLBOX 
 
 

for rational modeling from Y-parameter and S-parameter data 
 
 

User’s GUIDE and REFERENCE 
 
 
 

version 1.0 for Matlab 
 
 

Bjørn Gustavsen 
SINTEF Energy Research 

N-7465 Trondheim 
NORWAY 

 
e-mail: bjorn.gustavsen@sintef.no 

 
 
 
 
 
 
 
 



– 2 – 
 

 
 
 

Table of Contents 
 
 
1. INTRODUCTION.............................................................................................................. 3 
2. THE PACKAGE ................................................................................................................ 5 

2.1 Program Files ............................................................................................................. 5 
2.2 Instalment ................................................................................................................... 6 

3. FUNCTION CALL ............................................................................................................ 7 
3.1 VFdriver.m ................................................................................................................. 7 
3.2 RPdriver.m ................................................................................................................. 9 
3.3 netgen_ATP.m.......................................................................................................... 10 

4. USER’S GUIDE............................................................................................................... 11 
4.1 Hints and advice ....................................................................................................... 11 
4.2 Example 1: Electrical  circuit ................................................................................... 13 

4.2.1 Data case .......................................................................................................... 13 
4.2.2 Running the example........................................................................................ 14 
4.2.3 Generation of simulation model for ATP......................................................... 19 

4.3 Example 2: Network equivalencing ......................................................................... 22 
4.3.1 Generation of frequency domain data .............................................................. 22 
4.3.2 Rational fitting.................................................................................................. 22 
4.3.3 Passivity enforcement ...................................................................................... 24 

4.4 Example 3: Network equivalencing of transmission line......................................... 27 
4.5 Example 4: Network equivalencing: S-parameters .................................................. 30 

5. REFERENCE FOR COMPUTATIONAL APPROACH ................................................ 32 
5.1 Pole-residue modeling by Vector Fitting ................................................................. 32 

5.1.1 General ............................................................................................................. 32 
5.1.2 Standard Vector Fitting .................................................................................... 33 
5.1.3 Relaxed Vector Fitting ..................................................................................... 35 
5.1.4 Fast implementation ......................................................................................... 35 
5.1.5 Expansion into State Space model ................................................................... 37 

5.2 Passivity enforcement by Residue Perturbation (Y-parameters) ............................. 38 
5.2.1 Passivity assessment via Singularity Test Matrix ............................................ 38 
5.2.2 Fast Residue Perturbation (FRP)...................................................................... 39 
5.2.3 Reducing the number of constraints................................................................. 40 
5.2.4 Robust iterations............................................................................................... 42 

5.3 Passivity enforcement by Residue Perturbation (S-parameters) .............................. 43 
5.3.1 Passivity assessment......................................................................................... 43 
5.3.2 Passivity enforcement ...................................................................................... 43 

6. REFERENCES................................................................................................................. 44 
7. ACKNOWLEDGEMENT ............................................................................................... 45 
  
 



– 3 – 
 

1. INTRODUCTION 
 
This manual describes a collection of Matlab routines for rational multi-port modeling of 
symmetrical Y-parameter and S-parameter data in the frequency domain, including passivity 
enforcement. The output is a rational model on pole-residue form (1.1) and a corresponding 
state space model (1.2), both with stable poles.  
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 VFdriver.m identifies models (1.1) and (1.2) using the pole relocating Vector Fitting 

technique (VF) [1]. The applied strategy is to stack the upper triangle of an admittance 
matrix Y(s) (or scattering matrix S(s)) into a single column which is next fitted by VF 
using a common pole set. The implementation includes relaxation of the nontriviality 
constraint [2] (improved convergence) as well as a fast implementation of the pole 
identification step [3] (reduced memory requirements and computation time). 

 RPdriver.m perturbs the model so that it becomes passive and so that that E become 
positive real (Y-parameters). This is achieved by perturbing the eigenvalues of the 
residue matrices {Rm} and those of D and E while minimizing the change to the 
model’s behavior. (Y-parameters: [5], S-parameters [7]). The passivity assessment is 
based on half-size test matrices (Y-parameters: [4], S-parameters [6]). RPdriver.m 
makes use of routine “quadprog” in the Matlab Optimization Toolbox.  

 netgen_ATP.m exports the obtained rational model into the ATP simulation 
environment.      

 
An overview of the procedure is shown in Fig. 1.1. 
 
The program system has been tested on Matlab v7.5.0. All timing results are with a desktop 
computer running under Windows XP with a Pentium 2.5 GHz dual core CPU.  
 
Download site (matrix_fitting_toolbox_1.zip): 
 http://www.energy.sintef.no/Produkt/VECTFIT/index.asp 
 
Restrictions of use:  
 Embedding any of (or parts from) the routines of the Matrix Fitting Toolbox  in a commercial 

software, or a software requiring licensing, is strictly prohibited. This applies to all routines, 
see Section 2.1.  

 If the code is used in a scientific work, then reference should me made as follows: 
o VFdriver.m and/or vectfit3.m: References [1],[2],[3] 
o RPdriver.m and/or FRPY.m applied to Y-parameters: [4],[5] 
o RPdriver.m and/or FRPS.m applied to S-parameters: [6],[7] 

http://www.energy.sintef.no/Produkt/VECTFIT/index.asp
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Tabulated data 

 
Fig. 1.1  Program overview 

Y(s) (or S(s)) 
VFdriver.m

Iterative pole relocation using 
vector fitting (vectfit3.m) 

Rational model (stable) 
RPdriver.m

Perturbation   
–Passivity assessment 
–Passivity enforcement (FRPY.m, FRPS.m )

Rational model (stable and passive) 
netgen.m 

Convert rational model into lumped circuit

netlist for ATP-EMTP 
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2. THE PACKAGE 
 

2.1 Program Files 
 
The package (Matrix_Fitting_Toolbox_1.zip) consists of the following files: 
 
Documentation 
user_manual_Matrix Fitting Toolbox.pdf  This document 
 
Matlab routines: 
VFdriver.m Driver routine for rational fitting (calls vectfit3.m).  
RPdriver.m      Driver routine for passivity enforcement 
netgen_ATP.m Generation of model for ATP simulation environment  
 
Auxiliary routines:  
vectfit3.m violextremaY.m intercheig.m fitcalcPRE.m 
FRPY.m  violextremaS.m interchsvd.m fitcalcABCDE.m 

FRPS.m rot.m pr2ss.m  

                        
Other files: 
ex1_Y.m Tutorial example (Y-parameters) 
ex2_Y.m Network equivalencing (Y-parameters)  
ex3_Y.m Network equivalencing (Y-parameters) 
ex4_S.m Network equivalencing (S-parameters) 
 
ex2_Y.mat s-domain data for ex2_Y.m 
ex3_Y.mat rational model for ex3_Y.m 
ex4_S.mat s-domain data for ex4_S.m 
 
circuit.atp ATP data file for example in Section 4.2. 
 
Reference material (technical papers) 
VF.pdf   [1] Standard Vector Fitting (VF) 
VFrelaxed.pdf   [2] VF with relaxation 
VFfast.pdf   [3] VF with fast implementation 
passivitytestY.pdf   [4] Passivity test for Y-parameter model 
passivityenforcementY.pdf [5] Passivity enforcement for Y-parameter model 
passivitytestS.pdf   [6] Passivity test for S-parameter model 
passivityenforcementS.pdf [7] Passivity enforcement for S-parameter model 
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2.2 Instalment 
 
 Place all files in a common directory, e.g.  

c:\user\mtrxfit 

 Include the directory in the Matlab search path, 
>>addpath c:\user\mtrxfit 
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3. FUNCTION CALL  
 

3.1 VFdriver.m 
 
The following function call with generate a pole-residue model for a data set (s, H(s))  
with n ports and Ns frequency samples. (H can be Y- or S-parameter data).  
 
[SER,rmserr,Hfit,opts2]=VFdriver(H,s,poles) 
[SER,rmserr,Hfit,opts2]=VFdriver(H,s,poles,opts) 
 

Input:  
H    : (n,n,Ns)  3D matrix holding the H-samples   
s    : (1,Ns)      vector holding the frequency samples, s= j [rad/sec].  
poles: (1,N)     vector holding the initial poles  (manual specification of  
                                  initial poles). Use opts for automated specification. 
 

opts is an optional structure that can be used for overriding defaults settings, and for 
requesting plots.  (Example: opts.N=30; opts.poletype=’lincmplx’). 
 
Parameter Purpose/Description Default  
 

 

 

 

 

N 

poletype 

nu 

Automated generation of initial poles, taken as complex 

conjugate pairs that are distributed over the frequency band. 

Specify linear or logarithmic distribution, or a mix of the two. 

(Note: To invoke this option, specify the input array “poles” to 

be empty (poles=[])). 

Fitting order (integer)                                          

Allowed values: ‘lincmplx’,’logcmplx’,’linlogcmplx’              

Ratio between real and imag. part                               

  (pole=-nu*beta  j*beta) 

 

 

 

 

 

– 

’lincmplx’ 

0.001 

Niter1 n.o. VF iterations (fitting sum of matrix elements to obtain an 

improved pole set). 
4 

Niter2 n.o. VF iterations (fitting upper triangle of H) 
4 

weight 

 

weightparam 

Array (Nc,Nc,Ns) containing user-defined weight for sample 

H(i,j,k) in least squares problem. 

Automated generation of weight array. Used when opts.weight=[] 

=1 --> Same weight for all elements: weight(i,j,k)=1 

=2 --> weight(i,j,k)=1./abs(H(i,j,k)) inverse weighting     

=3 --> weight(i,j,k)=1./sqrt(abs(H(i,j,k)))     

=4 --> weight(k)=1/norm(H(:,:,k))     inverse weighting 

=5 --> weight(k)=1/sqrt(norm(H(:,:,k))) 

[] 

 

1 

asymp Control type of rational model 

=1 –-> D=0,  E=0 

=2 --> D~=0, E=0 

2 
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=3 --> D~=0, E~=0 

stable Control handling of unstable poles  

=1 --> Will enforce stable poles poles by flipping 

       any unstables into the left half plane 

1 

relaxed =1 --> Will use VF with “relaxed” non-triviality   

       constraint. (faster convergence) 

1 

plot 

logx 

logy 

errplot 

phaseplot 

=1 --> magnitude plot of fitting result 

   =1 --> plot using logarithmic freq. axis 

   =1 --> plot using logarithmic y-axis 

   =1 --> include deviation (error) in plot  

   =1 --> additional plot of phase angles 

1 

0 

1 

1 

1 

screen =1 --> will echo results to screen during fitting process. 1 

cmplx_ss =1 --> complex state space model (A,B,C,D,E) with diag. A. 

=0 --> real state space model with block-diagonal A. 

1 

 
Additional (advanced) parameters in structure opts:  
Parameter Purpose/Description Default  

remove_HFpoles 

 

=1 --> Will remove poles at frequencies above  

       factor_HF*s(end)  

0 

factor_HF Is used only if remove_HFpoles=1  1.1 

passive_DE 

passive_DE_TOLD 

passive_DE_TOLE 

=1 --> Will enforce that D and E have positive eigenvalues 

    Neg. eigenvals of D are made positive by this amount  

    Neg. eigenvals of E are made positive by this amount  

0 

1e-6 

1e-16 

 
Output:  
SER is a structure with the model on pole-residue form. For a model with n ports and N 
residue matrices, the dimensions are 
SER.poles: (1,N) 
SER.R:     (n,n,N)    (residue matrices) 
SER.D:     (n,n) 
SER.E:     (n,n) 

 
The returned SER also holds matrices A,B,C for the associated state space model. 
SER.A: (nN,nN) 
SER.B: (nN,n) 
SER.C: (n,nN) 

 
rmserr : the resulting RMS-error of the fitting   
Hfit : (n,n,Ns)  3D matrix holding the H-samples of the rational model   
opts2 contains all options parameters, including default settings 
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3.2 RPdriver.m 
 
The following function call will enforce passivity of a rational model generated by VFdriver, 
 
[SER,Yfit,opts2]=RPdriver(SER,s); 
[SER,Yfit,opts2]=RPdriver(SER,s,opts); 
 

Input: 
SER is a structure with the model on pole-residue form. The contents is the same as for 
VFdriver, see Section 3.1.  
- Fields A,B,C are the input.  
- Field SER.E is ignored when applied to S-parameters (opts.parametertype=’S’) 
 

s    : (1,Ns)   A vector of frequency samples, s=j. The perturbation seeks to  
                                minimize the change to Y(s) at the given samples.   
opts      Optional structure that can be used for overriding defaults settings,  
                                and for requesting plots.   
Output: 
SER  :                   The perturbed model, on pole residue form and on state space form. 
Yfit : (n,n,Ns) 3D matrix holding the Y-samples (or S-samples) of the perturbed model 
                               (at freq. s) 
opts2:                   Structure containing all options parameters, including default settings 
 
Parameter Purpose Default 

parametertype ‘Y’ --> Specifies Y-parameter model 

‘S’ --> Specifies S-parameter model 

‘Y’ 

Niter_out Max. n.o. iterations in outer loop in “Robust 

iterations” 

10 

Niter_in Max. n.o. iterations in inner loop in “Robust 

iterations” 

0 

TOLGD Y-parameter model:  

  Negative egenvalues of G(s)=Re{Y(s)} and D are 

  attempted to be made positive by an amount TOLGD 

S-parametermodel: 

  Singular values of S(s) and D are attempted to be made 

  smaller than unity positive by an amount TOLGD 

1E-6 

   

TOLE Negative egenvalues of E are attempted to be made 

positive by an amount TOLE. (Y-parameter model) 

1E-12 

cmplx_ss =1 --> perturbed statespace model on complex form 

=0 --> perturbed statespace model on real form 

1 

weightparam Automated generation of weight array for LS part of 

contraint problem. (Applies to both Y- and S-parameters)  

=1 --> Same weight for all elements: weight(i,j,k)=1 

1 
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=2 --> weight(i,j,k)=1./abs(Y(i,j,k)) inverse weighting   

=3 --> weight(i,j,k)=1./sqrt(abs(Y(i,j,k)))     

=4 --> weight(k)=1/norm(Y(:,:,k))     inverse weighting 

=5 --> weight(k)=1/sqrt(norm(Y(:,:,k))) 

weightfactor Least Squares weight for out-of band auxiliary samples 1e-3 

colinterch =1 --> Will recover the correct sequence of eigenvalues 

(singular values) during passivity assessement 

1 

outputlevel =1 --> Detailed output to command window 

=0 --> Essential output to command window   

1 

plot.s_pass Array of frequency samples (jw). If provided, 

eigenvalues of G(s) / singular values of S(s) will 

during iterations be plotted at these frequencies. 

 

plot.xlim If provided, the plot of eig(G(s))/sing(S) will be 

limited  in frequency [Hz] to this band.  

Syntax: [xlow xhigh]  

 

plot.ylim If provided, the plot of eig(G(s)) will be limited in 

range to this band. Syntax: [ylow yhigh] 

 

 

3.3 netgen_ATP.m 
Auxiliary routine that exports the rational model into a data file for ATP [8]. The data file 
contains the branch cards of an equivalent electric circuit. The file can be imported into an 
ATP data file using the $INCLUDE feature of ATP. The calculation of the network is 
explained in [9]. Compared to the earlier version in mtrxfit.zip, the current version makes use 
of two more digits in the representation of the circuit elements.   
 
The (six-character) node names in the ATP-circuit are  
X____1, X____2, X____3, etc 

 
where ‘X’ is a user provided node name, given in input variable NOD.   
 
 
netgen_ATP(SER,NOD,fname) 
 
SER     Structure holding the rational model, as produced by VFdriver or RPdriver  
NOD   Single character  
fname  File name where data is to be written.  
 
 
Example: 
NOD='A';  
fname ='RLC_ATP.txt'; 
netgen_ATP(SER,NOD,fname); 
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4. USER’S GUIDE 
 

4.1 Hints and advice 
 
VFdriver.m 
 poletype. This parameter is used for automated generation of an initial pole set. The 

choice of this parameter depends on the nature of the frequency response to be fitted.  
If the poles (resonances) appear to be  

o linearly distributed in frequency, choose ‘lincmplx’;  
o logarithmically distributed in frequency, choose ‘logcmplx’; 

 
 Some times (for instance when fitting a transformer response), the poles appear to be 

logarithmically distributed (and real) at low frequencies, and linearly distributed (and 
complex) at high frequencies. In such cases, it may be best to choose  
‘linlogcmplx’; 

 passive_DE. Setting this parameter will request VFdriver to enforce D and E of the 
rational model to be positive definite, meaning that the model is asymptotically 
passive. If the resulting model is to be submitted to RPdriver for a final passivity 
correction, it is essential that D (Y-parameter case) is non-singular since the passivity 
check by the Hamiltonian matrix requires to compute the inverse of D. In the case of 
S-parameters, we require that D+I and D–I are non-singular.  

RPdriver.m 
 Niter_out. This parameter defines the number of iterations for the outer loop in 

Section 5.2.3. The default value is 4 but it may be necessary to increase this value to 
get rid of all passivity violations.   

 Niter_in. This parameter defines the number of iterations for the inner loop in 
Section 5.2.3. The default value is three but it may be necessary to increase this value 
if the passivity enforcement keeps creating new violations.  

 TOLGD. The routine tries to enforce negative minima of  eig(G(s)) to be positive by this 
amount (as well as eigenvalues of D). The performance of the routine is dependent on 
the selected value: using a too small value (close to zero) will often result in an 
increase of the required number of iterations (due to the nonlinearity of the problem), 
and D may become nearly singular. On the other hand, using a too large value will 
cause a too large perturbation of the model.  

 

Inaccurate fitting result 
If an accurate fitting  result cannot be obtained (VFdriver.m) no matter what order you try, 
then there is probably something wrong with your frequency response. A rational function in 
the frequency domain has a real and imaginary part, which are related in a “special way”. This 
means that not all functions are fittable; they have to be “physical”. So the first requirement is 
that that the frequency response (s,Y(s)) is not corrupted in some way.  The default setting for 



– 12 – 
 

VFdriver is to enforce stable poles (opts.stable=1). Try to allow unstable poles 
(opts.stable=0) and see if the problem goes away.  
 
Divergence of passivity enforcement  
Observe what happens to “Max. violation” in the Matlab command window during iterations. 
If there is a tendency of divergence, specify a non-zero value for opts.Niter_in in order to 
enable the inner iteration loop. It may also help to increase the value of TOLGD. 
 
Also, if the model is created by VFdriver using  passive_DE=1, make sure that 
passive_DE_TOLD is positive and non-zero. Try to increase the value of this parameter.  
 
Crash in passivity enforcement  
If you specify opts.asymp=1 in the call to VFdriver.m, you will get a model with D=0. In 
that case, D is singular and so the passivity assessment will crash in RPdriver.m. 
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4.2 Example 1: Electrical  circuit 
 
File: ex1_Y.m 
In this small example is demonstrated the usage of VFdriver as well as the generation of 
simulation models for ATP and EMTP-RV. 

4.2.1 Data case 
 
Consider the electrical network in Fig. 4.2.1 (quantities given in units [], [H], [F]). We wish 
to calculate a black box model of the equivalent with respect to terminals 1 and 2 when only 
the frequency response at the terminals are known.  
 

 
 1 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.2.1  Electric circuit  
 
% This file is part of the Matrix Fitting Toolbox, v1. 
% Filename: ex1_Y.m 
% Package: Matrix_Fitting_Toolbox_1.zip. 
% Programmed by B. Gustavsen. October 08, 2008. 
% 
clear all 
  
Ns=501;    %Number of frequency samples 
Nc=2;      %Size of Y (after reduction) 
bigY=zeros(Nc,Nc,Ns); 
Y=zeros(4,4); 
s=2*pi*i*logspace(1,5,Ns); 
  
%Component values:  
R1=1;    L1=1e-3; C1=1e-6; 
R2=5;    L2=5e-3; 
R3=1;    C3=1e-6; 
L4=1e-3; 
R4=1e-2; L5=20e-3; 
R6=10;   C6=10e-6; 
R7=1;    C7=2e-6; 
  
%Building Y, reduction: 

1e-3   

 

 

 

  

 

5 1e-6 5e-3
1 

1 
4 

1e-6
2 

1e-3

20e-3

10 10e-6 1 2e-6

1e-2

3 

1e-2 
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for k=1:Ns 
  sk=s(k); 
  y1=1/( R1+sk*L1+1/(sk*C1) ); 
  y2=1/( R2+sk*L2 ); 
  y3=1/( R3+1/(sk*C3)); 
  y4=1/( R4+sk*L4); 
  y5=1/(sk*L5); 
  y6=1/( R6+1/(sk*C6) ); 
  y7=1/( R7+1/(sk*C7) ); 
   
  Y(1,1)= y1+y3; 
  Y(2,2)= y4; 
  Y(3,3)= y3 +y4 +y5 +y6; 
  Y(4,4)= y1 +y2 +y6 +y7; 
   
  Y(1,3)=-y3; Y(1,4)=-y1; 
  Y(2,3)=-y4; 
  Y(3,1)=-y3; Y(3,2)=-y4; Y(3,4)=-y6; 
  Y(4,1)=-y1; Y(4,3)=-y6; 
   
  %Eliminating nodes 3 and 4: 
  Yred=Y(1:2,1:2)-Y(1:2,3:4)*Y(3:4,3:4)^(-1)*Y(3:4,1:2); 
  bigY(:,:,k)=Yred; 
  %bigY(:,:,k)=diag(diag(Yred)); 
end   
  
%================================================ 
%=           POLE-RESIDUE FITTING               = 
%================================================  
opts.N=8;              %Order of approximation. (Is used when opts.poles=[]).   
opts.poletype='logcmplx';   %Will use logarithmically spaced, complex poles. (Is 
used when opts.poles=[]). 
poles=[]; %[] -->N initial poles are automatically generated as defined by 
opts.startpoleflag  
[SER,rmserr,bigYfit,opts2]=VFdriver(bigY,s,poles,opts); %Creating state-space model 
and pole-residue model  
  

4.2.2 Running the example 

 
 
Running ex1_Y.m from Matlab’s command window gives the output to screen shown below.  
 
>> ex1_Y 
-----------------S T A R T-------------------------- 
****Stacking matrix elements (lower triangle) into single column ... 
****Calculating improved initial poles by fitting column sum ... 
   Iter 1 
   Iter 2 
   Iter 3 
   Iter 4 
****Fitting column ... 
   Iter 1 
   Iter 2 
   Iter 3 
   Iter 4 
Elapsed time is 0.198631 seconds. 
****Transforming model of lower matrix triangle into state-space model of full 
matrix ... 
****Generating pole-residue model ... 
****Plotting of results ... 
-------------------E N D---------------------------- 
****Creating equivalent circuit for ATP... 
>> 
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The result in Fig. 4.2.2 shows that the approximation is highly accurate as the deviation is 
close to machine precision. (The plot is automatically generated). 
 
Fig. 4.2.2  Generated plot of rational fitting 
 
In addition to the parameters specified in the input opts, there several other parameters that 
are set internally in VFdriver.m. All settings that were used are returned in structure opts2. 
(Note that the parameters that were manually overridden in ex1_Y.m are listed first (N, 
poletype). Using input array opts, all default settings can be changed, see Section 3.1.  
 
>> opts2 
                 N: 8 
          poletype: 'logcmplx' 
                nu: 1.0000e-003 
            Niter1: 4 
            Niter2: 4 
            weight: [] 
       weightparam: 1 
             asymp: 2 
            stable: 1 
           relaxed: 1 
              plot: 1 
              logx: 1 
              logy: 1 
           errplot: 1 
         phaseplot: 1 
            screen: 1 
          cmplx_ss: 1 
    remove_HFpoles: 0 
         factor_HF: 1.1000e+000 
        passive_DE: 0 
      passive_TOLD: 1.0000e-006 
      passive_TOLE: 1.0000e-016 
 

Pole-residue model: 
 
>> SER.poles 
ans = 
 -4.7619e-001               
 -1.2876e+005               
 -1.0229e+003 +3.5994e+003i 
 -1.0229e+003 -3.5994e+003i 
 -2.2888e+003 +1.8044e+004i 
 -2.2888e+003 -1.8044e+004i 
 -1.0116e+003 +3.8290e+004i 
 -1.0116e+003 -3.8290e+004i 
 
>> SER.R 
ans(:,:,1) = 
 -1.7930e-014 -2.1595e-007 
 -2.1595e-007  4.7619e+001 
ans(:,:,2) = 
 -1.0019e+004 -5.3834e+002 
 -5.3834e+002 -2.8926e+001 
ans(:,:,3) = 
  2.1958e-001 +2.2124e-001i  3.7368e+000 +1.9303e+000i 
  3.7368e+000 +1.9303e+000i  5.5986e+001 +9.2914e+000i 
ans(:,:,4) = 
  2.1958e-001 -2.2124e-001i  3.7368e+000 -1.9303e+000i 
  3.7368e+000 -1.9303e+000i  5.5986e+001 -9.2914e+000i 
ans(:,:,5) = 
  1.8288e+002 +6.5934e+001i -2.6855e+002 -7.6004e+001i 
 -2.6855e+002 -7.6004e+001i  3.9227e+002 +8.1793e+001i 
ans(:,:,6) = 
  1.8288e+002 -6.5934e+001i -2.6855e+002 +7.6004e+001i 
 -2.6855e+002 +7.6004e+001i  3.9227e+002 -8.1793e+001i 
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ans(:,:,7) = 
  1.3290e+002 +1.8383e+001i  7.5653e+001 +9.8304e-001i 
  7.5653e+001 +9.8304e-001i  4.2401e+001 -4.7459e+000i 
ans(:,:,8) = 
  1.3290e+002 -1.8383e+001i  7.5653e+001 -9.8304e-001i 
  7.5653e+001 -9.8304e-001i  4.2401e+001 +4.7459e+000i 
 
>> SER.D 
ans = 
  8.3333e-002  1.6229e-017 
  1.6229e-017 -9.0221e-018 
 
>> SER.E 
ans = 
     0     0 
     0     0 

 
State-space model: 
 

The state-space model has a diagonal A with complex-valued A and C, as requested by parameter 

opts.cmplx_ss=1.  
 
>> SER.A 
ans = 
   (1,1)    -4.7619e-001               
   (2,2)    -1.2876e+005               
   (3,3)    -1.0229e+003 +3.5994e+003i 
   (4,4)    -1.0229e+003 -3.5994e+003i 
   (5,5)    -2.2888e+003 +1.8044e+004i 
   (6,6)    -2.2888e+003 -1.8044e+004i 
   (7,7)    -1.0116e+003 +3.8290e+004i 
   (8,8)    -1.0116e+003 -3.8290e+004i 
   (9,9)    -4.7619e-001               
  (10,10)   -1.2876e+005               
  (11,11)   -1.0229e+003 +3.5994e+003i 
  (12,12)   -1.0229e+003 -3.5994e+003i 
  (13,13)   -2.2888e+003 +1.8044e+004i 
  (14,14)   -2.2888e+003 -1.8044e+004i 
  (15,15)   -1.0116e+003 +3.8290e+004i 
  (16,16)   -1.0116e+003 -3.8290e+004i 

 
>> SER.B 
 
ans = 
 
     1     0 
     1     0 
     1     0 
     1     0 
     1     0 
     1     0 
     1     0 
     1     0 
     0     1 
     0     1 
     0     1 
     0     1 
     0     1 
     0     1 
     0     1 
     0     1 

 
 
>> (SER.C).' 
ans = 
 -1.7930e-014               -2.1595e-007               
 -1.0019e+004               -5.3834e+002               
  2.1958e-001 +2.2124e-001i  3.7368e+000 +1.9303e+000i 
  2.1958e-001 -2.2124e-001i  3.7368e+000 -1.9303e+000i 
  1.8288e+002 +6.5934e+001i -2.6855e+002 -7.6004e+001i 
  1.8288e+002 -6.5934e+001i -2.6855e+002 +7.6004e+001i 
  1.3290e+002 +1.8383e+001i  7.5653e+001 +9.8304e-001i 
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  1.3290e+002 -1.8383e+001i  7.5653e+001 -9.8304e-001i 
 -2.1595e-007                4.7619e+001               
 -5.3834e+002               -2.8926e+001               
  3.7368e+000 +1.9303e+000i  5.5986e+001 +9.2914e+000i 
  3.7368e+000 -1.9303e+000i  5.5986e+001 -9.2914e+000i 
 -2.6855e+002 -7.6004e+001i  3.9227e+002 +8.1793e+001i 
 -2.6855e+002 +7.6004e+001i  3.9227e+002 -8.1793e+001i 
  7.5653e+001 +9.8304e-001i  4.2401e+001 -4.7459e+000i 
  7.5653e+001 -9.8304e-001i  4.2401e+001 +4.7459e+000i 

 

The D and E matrices are the same as for the pole-residue model.  
 
With opts.cmplx_ss=0, a real-only state-space model is produced, 
 
   (1,1)    -4.7619e-001 
   (2,2)    -1.2876e+005 
   (3,3)    -1.0229e+003 
   (4,3)    -3.5994e+003 
   (3,4)     3.5994e+003 
   (4,4)    -1.0229e+003 
   (5,5)    -2.2888e+003 
   (6,5)    -1.8044e+004 
   (5,6)     1.8044e+004 
   (6,6)    -2.2888e+003 
   (7,7)    -1.0116e+003 
   (8,7)    -3.8290e+004 
   (7,8)     3.8290e+004 
   (8,8)    -1.0116e+003 
   (9,9)    -4.7619e-001 
  (10,10)   -1.2876e+005 
  (11,11)   -1.0229e+003 
  (12,11)   -3.5994e+003 
  (11,12)    3.5994e+003 
  (12,12)   -1.0229e+003 
  (13,13)   -2.2888e+003 
  (14,13)   -1.8044e+004 
  (13,14)    1.8044e+004 
  (14,14)   -2.2888e+003 
  (15,15)   -1.0116e+003 
  (16,15)   -3.8290e+004 
  (15,16)    3.8290e+004 
  (16,16)   -1.0116e+003 
 
 
>> SER.B 
 
ans = 
 
     1     0 
     1     0 
     2     0 
     0     0 
     2     0 
     0     0 
     2     0 
     0     0 
     0     1 
     0     1 
     0     2 
     0     0 
     0     2 
     0     0 
     0     2 
     0     0 
 
>> (SER.C).' 
 
ans = 
 
 -1.7930e-014 -2.1595e-007 
 -1.0019e+004 -5.3834e+002 
  2.1958e-001  3.7368e+000 
  2.2124e-001  1.9303e+000 
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  1.8288e+002 -2.6855e+002 
  6.5934e+001 -7.6004e+001 
  1.3290e+002  7.5653e+001 
  1.8383e+001  9.8304e-001 
 -2.1595e-007  4.7619e+001 
 -5.3834e+002 -2.8926e+001 
  3.7368e+000  5.5986e+001 
  1.9303e+000  9.2914e+000 
 -2.6855e+002  3.9227e+002 
 -7.6004e+001  8.1793e+001 
  7.5653e+001  4.2401e+001 
  9.8304e-001 -4.7459e+000 
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4.2.3 Generation of simulation model for ATP 

 
ex1_Y.m calls netgen_ATP.m : 
 
NOD='A';  
fname ='RLC_ATP.txt'; 
netgen_ATP(SER,NOD,fname);  %Creating branch-cards for ATP  

 
This produces a file RLC_ATP.txt with the following contents: 
 
$VINTAGE,1 
C <BUS1><BUS2><BUS3><BUS4><   OHM        ><   milliH     ><   microF     > 
C  
$VINTAGE,1 
C <BUS1><BUS2><BUS3><BUS4><   OHM        ><   milliH     ><   microF     > 
C  
C (1,1) 
  A____1                   1.20000000e+001 
  A____1                                                   3.00000000e-010 
  A____1                  -2.20505113e+006-4.63060716e+009 
  A____1                  -1.21959492e+001-9.47194746e-002 
  A____1A 3__1             3.76645764e+002 1.26376926e+002 
  A 3__1                  -2.27028923e+003 
  A 3__1                                                   4.71374555e-001 
  A____1A 5__1            -2.57338708e+001-5.83599210e+000 
  A 5__1                  -1.14565657e+004 
  A 5__1                                                  -5.19129996e-001 
  A____1A 7__1             1.09495943e+001 2.39745382e+000 
  A 7__1                  -1.39356194e+003 
  A 7__1                                                   2.82071301e-001 
C (1,2) 
  A____1A____2            -8.60370102e+015 
  A____1A____2                                            -1.00000000e-010 
  A____1A____2             2.20505112e+006 4.63060713e+009 
  A____1A____2             2.39175279e+002 1.85754765e+000 
  A____1A 3_12            -3.85654189e+002-1.33803037e+002 
  A 3_12A____2             2.62569679e+003 
  A 3_12A____2                                            -4.55368132e-001 
  A____1A 5_12             1.37691254e+001 1.86184206e+000 
  A 5_12A____2            -2.32353531e+002 
  A 5_12A____2                                             1.52736719e+000 
  A____1A 7_12            -9.97399817e+000-6.60910817e+000 
  A 7_12A____2            -1.88522825e+004 
  A 7_12A____2                                            -1.03186254e-001 
C (2,2) 
  A____2                   3.25513438e+015 
  A____2                                                   3.00000000e-010 
  A____2                   9.99999910e-003 2.09999971e+001 
  A____2                  -2.26979329e+002-1.76282818e+000 
  A____2A 3__2             1.42263095e+001 8.37207251e+000 
  A 3__2                   3.23949426e+002 
  A 3__2                                                   8.90531215e+000 
  A____2A 5__2             1.26628586e+001 4.04153239e+000 
  A 5__2                   9.12933873e+002 
  A 5__2                                                   7.58320546e-001 
  A____2A 7__2            -8.84566299e-001 4.23533375e+000 
  A 7__2                   2.78476100e+003 
  A 7__2                                                   1.60882715e-001 
$VINTAGE,0 

 

Nodes A____1 and A____2 represent the terminals of the equivalent.  
 
This circuit is conveniently imported into ATP-EMTP using the $INCLUDE statement 
imbedded in an ATP data file. 
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Consider the situation that a unit step voltage is applied to terminal 1 and we wish to calculate 
the resulting current flowing into terminal 2, see Fig. 4.2.3. 
 
 
 
 
 
 
 
 
Fig. 4.2.3  ATP-simulation 
 
An ATP-file for the simulation case in Fig. 4.2.3 is shown below, given in file circuit.atp. 
(A 1 µ resistor is used for the current measuremet). Note that the equivalent electrical 
network is imported using the $INCLUDE statement, and that the node names are A____1 
and A____2. (To run  this ATP-case, be sure to update the path statement in circuit.atp). 
 
BEGIN NEW DATA CASE 
C         
C  Example described in user_manual.pdf 
C 
C     ====================================================== 
C     =   File:   circuit.atp                              = 
C     =   Version 1.0                                      = 
C     =   Last revised: 19.03.2002                         =  
C     =   Programmed by: Bjorn Gustavsen,                  = 
C     =   SINTEF Energy Research, N-7465 Trondheim, NORWAY = 
C     =   This file is part of the "matrixfitter-package"  =  
C     ======================================================  
C         
$DUMMY, XYZ000   
C 
C 
C FIRST MISCELLANEOUS DATA CARD                      
$DUMMY, XYZ000 
C FIRST MISCELLANEOUS DATA CARD    
C  dT  >< Tmax >< Xopt >< Copt > 
1.000E-6    .005                 
C                                         
C SECOND MISCELLANEOUS DATA CARD                
C    1-8    9-16   17-24   25-32   33-40   41-48   49-56   57-64   65-72   73-80 
C  PRINT    PLOT NETWORK   PR.SS  PR.MAX   I PUN   PUNCH    DUMP   MULT. DIAGNOS 
C 0=EACH  0=EACH   0= NO   0= NO   0= NO   0= NO   0= NO    INTO  ENERG.   PRINT 
C K=K-TH  K=K-TH   1=YES   1=YES   1=YES   1=YES   1=YES    DISK STUDIES    0=NO 
   10000       1       0       0                               1                    
C                              
C BRANCHES                
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
C    3-8  9-14 15-20 21-26 27-32 33-38 39-44 
C   NODE NAMES   REFERENCE  RES.  IND.  CAP.               (OUTPUT IN COLUMN 80) 
C                   BRANCH          MH    UF                              I=   1 
C <BUS1><BUS2><BUS3><BUS4>   OHM   OHM  UMHO                              V=   2 
C                                                                         I.V  3 
        A____2             1.E-6                                               1 
$INCLUDE C:\user\mtrx_fitter_new\RLC_ATP.txt  
C 
BLANK CARD TERMINATING BRANCH CARDS 
C SWITCH CARDS 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
C    3-8  9-14     15-24     25-34     35-44     45-54     55-64     65-74 
C                                                   (OUTPUT OPTION IN COLUMN 80) 
C   NODE NAMES                            IE FLASHOVER   SPECIAL   REFERENCE 
C                TIME TO   TIME TO        OR   VOLTAGE   REQUEST SWITCH-NAME 
C   BUS1  BUS2     CLOSE      OPEN   NSTEP                  WORD  BUS5  BUS6 
C 
BLANK CARD TERMINATING SWITCH CARDS 

1

2

+

 

step)1 volt (

i2
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C SOURCE CARDS 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
C COLUMN 1.2: TYPE OF SOURCE 1   17.(E.G. 11-13 ARE RAMP FUNCTIONS. 14 = COSINE) 
C COLUMN 9.10: 0=VOLTAGE SOURCE.  1=CURRENT SOURCE 
C    3-8       11-20     21-30     31-40     41-50     51-60     61-70     71-80 
C   NODE   AMPLITUDE FREQUENCY TO IN SEC   AMPL-A1   TIME-T1   T-START    T-STOP 
C   NAME                 IN HZ      DEGR             SECONDS   SECONDS   SECONDS 
14A____1         1.0     0.001        0.                           0.         1. 
C 
BLANK CARD TERMINATING SOURCE CARD 
C NODE VOLTAGE OUTPUT 
C 345678901234567890123456789012345678901234567890123456789012345678901234567890 
C    3-8  9-14 15-20 21-26 27-32 33-38 39-44 45-50 51-56 57-62 63-68 69-74 75-80 
C   BUS1  BUS2  BUS3  BUS4  BUS5  BUS6  BUS7  BUS8  BUS9 BUS10 BUS11 BUS12 BUS13 
C  A____1A____2 
C  NBY1A NBY1B NBY1C NBY6A NBY6B NBY6C NEUT  NBY6G GENA  GENB  GENC   
BLANK CARD TERMINATING OUTPUT CARDS        
BLANK CARD ENDING PLOT CARDS 
BEGIN NEW DATA CASE 
 
 

At the end of ex1_Y.m, the theoretical setp response is calculated: 
 
% Plotting step response:  
NN=length(SER.A) ; I=ones(NN,1); 
t=(0:1e-5:5e-3); Nt=length(t); 
for k=1:Nt 
  if opts2.cmplx_ss==1   
    y=SER.C*diag( diag(SER.A).^(-1).*(exp(diag(SER.A).*t(k))-I) )*SER.B +SER.D; 
  else   
    y=SER.C*( (SER.A)^(-1))*((expm((full(SER.A)).*t(k))-diag(I)) ) *SER.B +SER.D;   
  end   
  yy(k)=y(2,1); 
end   
figure(4),plot(1000*t,yy);       
xlabel('Time [ms]'); ylabel('Current [A]');  
 

Fig. 2.4 Compares the theoretical solution with the ATP simulation result.  
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Fig. 4.2.4  Step voltage response. Blue: theoretical, red: ATP simulation.
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4.3 Example 2: Network equivalencing  
 
File: ex2_Y.m 
In this second example we will demonstrate both rational fitting (VFdriver.m) and passivity 
enforcement (RPdriver.m).  
 

4.3.1 Generation of frequency domain data 

 
We consider a three-conductor overhead line of length 12 km, see Fig. 4.3.1. The admittance 
matrix Y is computed with respect to one line end with other line end open circuited. 

4.5 m

l=12 km 

 
Fig. 4.3.1.  132 kV overhead line 
 
On top of ex2_Y.m, the example case is loaded from file, 
 
load fdne %-->s, bigY 
  

4.3.2 Rational fitting 

 
In ex2_Y.m , the following call creates the a 50th order rational model of the 33 Y. 
 
%================================================ 
%=           POLE-RESIDUE FITTING               = 
%================================================  
opts.N=50 ;%           %Order of approximation.  
opts.poletype='linlogcmplx'; %Mix of lin. spaced and log. spaced poles 
opts.weightparam=5; %5 --> weighting with inverse magnitude norm 
opts.Niter1=7;    %Number of iterations for fitting sum of elements (fast!)  
opts.Niter2=4;    %Number of iterations for matrix fitting  
opts.asymp=2;      %Fitting includes D    
opts.logx=0;       %=0 --> Plotting is done using linear abscissa axis  
poles=[];  
  
[SER,rmserr,bigYfit,opts2]=VFdriver(bigY,s,poles,opts); 
 
 
 

1 
2 
3 4.5 m

11 m14.8 m 

Phase wires:  Rdc=0.121 /km, d=21.66 mm 
Ground wires: Rdc=0.359 /km, d=12.33 mm

soil=100 m 

1 2 3
4 
5 
6 
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>> ex2_Y 
-----------------S T A R T-------------------------- 
****Stacking matrix elements (lower triangle) into single column ... 
****Calculating improved initial poles by fitting column sum ... 
   Iter 1 
   Iter 2 
   Iter 3 
   Iter 4 
   Iter 5 
   Iter 6 
   Iter 7 
****Fitting column ... 
   Iter 1 
   Iter 2 
   Iter 3 
   Iter 4 
Elapsed time is 0.649053 seconds. 
****Transforming model of lower matrix triangle into state-space model of full 
matrix ... 
****Generating pole-residue model ... 
****Plotting of results ... 
-------------------E N D---------------------------- 

 

The magnitude plot is shown in Fig. 4.3.2. The order is in this case slightly too low so that an 
inaccurate fitting results locally.  
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Fig. 4.3.2.  Rational fitting 
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4.3.3 Passivity enforcement  

 
The inaccurate fitting results in that the obtained model is non-passive. In ex2_Y.m , the 
following enforces passivity, 
 
%================================================ 
%=           Passivity Enforcement              = 
%================================================  
clear opts; 
opts.parametertype='Y'; 
opts.plot.s_pass=2*pi*i*linspace(0,2e5,1001).';  
opts.plot.ylim=[-2e-3 2e-3]; 
  
[SER,bigYfit_passive,opts3]=RPdriver(SER,s,opts); 
 
  

This gives an output to the screen as shown below. It is seen that passivity is enforced in 8.6 
sec. The total time was reduced to 5.7 sec by removing plotting, achieved by commenting out 
as follows, 
 
%opts.plot.s_pass=2*pi*i*linspace(0,2e5,1001).';  
%opts.plot.ylim=[-2e-3 2e-3]; 
 
-----------------S T A R T-------------------------- 
*** Y-PARAMETERS *** 
  
  [ 1  0 ] 
  Passivity Assessment: 
    N.o. violating intervals: 3 
    Max. violation, eig(G) : -0.0035493 
    Max. violation, eig(D) : -0.00010945 
    Max. violation, eig(E) :  None 
  Passivity Enforcement... 
    Building system equation (once)... 
    Done 
Optimization terminated. 
  
  [ 2  0 ] 
  Passivity Assessment: 
    N.o. violating intervals: 1 
    Max. violation, eig(G) : -4.2799e-005 
    Max. violation, eig(D) :  None 
    Max. violation, eig(E) :  None 
  Passivity Enforcement... 
Optimization terminated. 
  
-->Passivity was successfully enforced. 
   Max. violation, eig(G) :  None 
   Max. violation, eig(D) :  None 
   Max. violation, eig(E) :  None 
Time summary:  
   Passivity assessment : 0.16619 sec 
   Passivity enforcement: 1.8029 sec 
   Total: 1.9661 sec 
-------------------E N D---------------------------- 

 

In the output dialogue, 



– 25 – 
 

 The bracket values [x y] denoted the iteration count for the outer (x) and inner (y) 
loops of the “robust iteration” (Section 5.2.3).  In this case, the inner loop iterations 
have been disabled (opts.Niter_in=0; default value). 

 The D has initially negative eigenvalues. The passivity enforcement takes care of this, 
making the violating eigenvalue positive by an amount 1E–6, as requested by 
opts.TOLGD=1e-6;   

 
>> eig(SER.D) 
ans = 
  1.0000e-006 
  1.0470e-003 
  1.2376e-003 

 
Thee eigenvalues of G=real(Y)) are plotted during the iterations, since the parameter 
opts.plot.s_pass was provided in the call. Fig. 4.3.3 shows the final result. It is observed 
that the eigenvalues are all positive after the passivity enforcement step. 
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Fig. 4.3.3  Eigenvalues of G(s).  
 
You can check on all settings that were used in the passivation process via the returned output 
structure opts3. (These values can be changed via the input structure opts). 
 
 
>>opts3 =  
           method: 'FRP' 
    parametertype: 'Y' 
        Niter_out: 10 
         Niter_in: 0 
            TOLGD: 1.0000e-006 
             TOLE: 1.0000e-012 
         cmplx_ss: 1 
      weightparam: 1 
     weightfactor: 1.0000e-003 
       colinterch: 1 
      outputlevel: 1 
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At the end of the file (ex2_Y.m), the original model is compared with the perturbed model (at 
samples defined by array s in call to RPdriver.m), see Fig. 4.3.4. It is seen that the change to 
the elements of Y is very small (within the fitting band), and that the deviation is “parallel” to 
the magnitude curves. In the right panel is shown the same result when setting 
opts.method=’FRP’. It is seen that the deviation curves are now much “flatter”. 
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Fig. 4.3.4  The effect of perturbation on the admittance matrix, Y 
 
The amount of information  to the Matlab command window can be reduced by setting 
parameter “opts.outputlevel” to zero: 
 
opts.outputlevel=0; 

 
-----------------S T A R T-------------------------- 
*** Y-PARAMETERS *** 
    Max. violation  : -0.0035493 
Optimization terminated. 
    Max. violation  : -4.2799e-005 
Optimization terminated. 
-->Passivity was successfully enforced. 
-------------------E N D----------------------------
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4.4 Example 3: Network equivalencing of transmission line  
 
File: ex3_Y.m 
Here, we demonstrate RPdriver for example ex4b.m in QPpassive.zip. This is a six-port 
equivalent of the transmission line in Fig. 4.3.1, but with a line length of 45 km. The fitting 
range is 10 Hz to 10 kHz using 30 pole-residue terms. 
 
clear all 
  
load ex3    %--> s, SER 
  
%================================================ 
%=           Passivity Enforcement              = 
%================================================  
opts.Niter_in=2; 
opts.Niter_out=20; 
opts.parametertype='Y'; 
opts.plot.s_pass=2*pi*i*linspace(0,3e4,1001).';  
opts.plot.ylim=[-2e-3 2e-3]; 
[SER2,bigYfit_passive,opts2]=RPdriver(SER,s,opts); 

 
>> ex3_Y 
-----------------S T A R T-------------------------- 
*** Y-PARAMETERS *** 
  
  [ 1  0 ] 
  Passivity Assessment: 
    N.o. violating intervals: 3 
    Max. violation, eig(G) : -0.0053053 @ 11991.6316 Hz 
    Max. violation, eig(D) :  None 
    Max. violation, eig(E) :  None 
  Passivity Enforcement... 
    Building system equation (once)... 
    Done 
Optimization terminated. 
  
  [ 1  1 ] 
  Passivity Assessment: 
  Passivity Enforcement... 
Optimization terminated. 
  
  [ 1  2 ] 
  Passivity Assessment: 
  Passivity Enforcement... 
Optimization terminated. 
  
  [ 2  0 ] 
  Passivity Assessment: 
    N.o. violating intervals: 1 
    Max. violation, eig(G) : -7.8331e-006 @ 11913.9947 Hz 
    Max. violation, eig(D) :  None 
    Max. violation, eig(E) :  None 
  Passivity Enforcement... 
Optimization terminated. 
  
  [ 2  1 ] 
  Passivity Assessment: 
  Passivity Enforcement... 
Optimization terminated. 
  
  [ 2  2 ] 
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  Passivity Assessment: 
  Passivity Enforcement... 
Optimization terminated. 
  
  [ 3  0 ] 
  Passivity Assessment: 
  
-->Passivity was successfully enforced. 
   Max. violation, eig(G) :  None 
   Max. violation, eig(D) :  None 
   Max. violation, eig(E) :  None 
Time summary:  
   Passivity assessment : 0.5389 sec 
   Passivity enforcement: 4.2076 sec 
   Total: 5.0695 sec 
-------------------E N D---------------------------- 

 

The amount of information  to the Matlab command window can be reduced by setting 
parameter “opts.outputlevel” to zero: 
 
opts.outputlevel=0; 
 
>> ex3_Y 
-----------------S T A R T-------------------------- 
*** Y-PARAMETERS *** 
    Max. violation  : -0.0053053 
Optimization terminated. 
Optimization terminated. 
Optimization terminated. 
    Max. violation  : -7.8331e-006 
Optimization terminated. 
Optimization terminated. 
Optimization terminated. 
-->Passivity was successfully enforced. 
-------------------E N D---------------------------- 
>> 
 

 Fig. 4.4.1 shows plot of the eigenvalues of G(s), as generated by RPdriver.m. It is 
seen that the perturbation makes the eigenvalues positive. 

  Fig. 4.4.2 shows the plot of the elements of Y(s), as generated by ex3_Y.m. It is seen 
that the change to the elements is very small inside the fitting band (10 Hz – 10 kHz).  
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Fig. 4.4.1  Eigenvalues of G(s).  
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Fig. 4.4.2  The effect of perturbation on the admittance matrix, Y(s) 
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4.5 Example 4: Network equivalencing: S-parameters  
 
This is the same example as in Section 4.2 (Eample 2), but with the Y-parameters converted 
to S-parameters before carrying out the rational fitting. The example loads the S-parameters 
and calculates a rational model using VFdriver. In the subsequent passivity enforcement, no 
inner-loop iterations are used.  
 
Fig. 4.5.1 shows that the singular values are enforced to be smaller than unity. The change to 
the model’s behavior is small as seen in Fig. 4.5.2.  
 
For a detailed screen output, change “opts.outputlevel” from 0 to 1. 
 
%================================================ 
%=           Passivity Enforcement              = 
%================================================  
clear opts; 
opts.plot.s_pass=2*pi*i*linspace(0,2e5,1001).';  
opts.plot.ylim=[0.95 1.05]; 
opts.Niter_in=0; 
opts.parametertype='S'; 
opts.outputlevel=0; %Min. output to screen 
 
[SER,bigYfit_passive,opts3]=RPdriver(SER,s,opts); 
 
>> ex4_S 
 
 
-----------------S T A R T-------------------------- 
*** S-PARAMETERS *** 
    Max. violation  : 0.014094 
Optimization terminated. 
    Max. violation  : 0.00027043 
Optimization terminated. 
    Max. violation  : 4.1078e-005 
Optimization terminated. 
    Max. violation  : 7.5435e-006 
Optimization terminated. 
    Max. violation  : 4.4734e-007 
Optimization terminated. 
-->Passivity was successfully enforced. 
-------------------E N D---------------------------- 
Elapsed time is 5.681933 seconds. 
>> 
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Fig. 4.5.1  Singular values of S 

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Frequency [Hz]

S
ca

tt
er

in
g 

m
at

rix

 

 

Original model

Perturbed model

Deviation

 
Fig. 4.5.2  The effect of perturbation on S 
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5. REFERENCE FOR COMPUTATIONAL APPROACH 
 

5.1 Pole-residue modeling by Vector Fitting 
 

5.1.1 General 

 
Y-parameters 
Given a symmetric admittance matrix Y as function of frequency (s,Y(s)),  the objective is to 
calculate a pole-residue model (5.1) which approximates (“fits”) the original data as close as 
possible. (D and E are possibly zero)   

 
1

( ) ( )
N

m
rat

mm

s s
s a

   
 R

Y Y D sE  (5.1) 

In the case of a physical system, the following properties apply 
1. Y is a symmetrical matrix. Hence, {Rm}, D, and E are symmetric 
2. D and E are real matrices 
3. The poles and residues are either real or come in complex conjugate pairs (causality 

requirement) 
4. The poles are in the left half plane 
5. The model is passive, i.e. it cannot generate energy. For the symmetrical model, this 

implies that 

  (5.2) (Re{ ( )}) 0rateig s Y

  (5.3) ( ) 0eig D

 
6. The capacitance matrix E is positive, i.e. 

  (5.4) ( ) 0eig E

 
Unfortunately, there is no efficient method available that can fit (5.1) accurately while at the 
same time satisfy requirements 1-6. In the matrix fitter package, the approach is to first fit 
(5.1) while satisfying 1-4. Requirements 5-6 are subsequently enforced by perturbation of 
model parameters, see Section 5.2. 
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S-parameters 
In the case of S-parameters, we are interested in calculating the (symmetrical) model 

 
1

( ) ( )
N

m
rat

mm

s s
s a

 
 R

S S D

H s

n

 (5.5) 

Similarly as with the admittance model, we require the poles to be stable and the 
poles/residues to be real or complex conjugate. The passivity requirement is however, 
different, now being related to the singular value decomposition, 

  (5.6) ( ) ( ) ( ) ( )s s sS U Σ V

where  is a diagonal matrix which contains the singular values, 1(s)... n(s). Passivity of the 
model entails that all singular values are smaller than unity, i.e.  

 ( ) 1, 1i s i    (5.7) 

Similarly as with Y-parameters, the passivity criterion is enforced by perturbing the model’s 
parameters, see Section 5.2. 
  

5.1.2 Standard Vector Fitting 

 
The rational fitting is done via routine VFdriver.m. The approach is to stack the upper 
triangle of Y (or S) into a single vector of elements (h(s) ) that is subjected to rational fitting 
by Vector Fitting (VF) [1], as implemented in vectfit3.m. 
 
VF is an iterative  technique which relocates an initial pole set to better positions by solving a 
linear least squares problem. VF can also be viewed as a reformulation of the Sanathanan-
Koerner (SK) iteration [10]. In VF, the polynomial basis has been replaced by a partial 
fractions basis, and the explicit weighting has been replaced by pole relocation. This gives VF 
the  advantage of better conditioning, it allows to enforce stable poles by pole flipping, and it 
arrives directly at the pole-residue model. An additional advantage is that the initial poles can 
often be favourably specified, thereby leading to relatively few iterations. (With SK-
iterations, there is no such flexibility since the initial weighting is uniform).    
 
The workings of VF is in the following explained for the fitting of a scalar (single-element) 
function, h(s), 
 

  
1

( )
N

m

m m

r
h s d se

s a

  
  (5.8) 
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A set of initial poles {am}is first specified.  With the initial poles as known quantities, the 
linear problem (5.9) is solved as an overdetermined linear least squares problem. 
 (s) 
 

 
1 1

( 1) ( )
N N

m m

m mm m

r r
h s d se

s a s a 

  
  

  (5.9) 

 
By writing each of the two sums of partial fractions in (5.6) as a product of zeros over poles, it 
can be shown [1] that the poles for h(s) must be equal to the zeros of (s). These zeros are 
calculated by solving the eigenvalue problem (5.10) [11, Appendix C] where A is a diagonal 
matrix holding the poles {am}, b is a column of ones, and c holds the residues { }. mr

 
 { } ( )T

ma eig  A b c  (5.10) 

 
Repeated application of (5.9) and (5.10) relocates the initial pole set to better positions. 
Convergence implies  in {  in (5.9). In practice, one will usually terminate the iterations 

before the convergence is complete. The final residues are calculated by solving (5.8) with 
known poles. During the iterations, unstable poles may occasionally occur. Any unstable pole 
is flipped into the left half plane by inverting the sign of the real part, thereby guaranteeing a 
rational model (5.8) with stable poles only. (The pole flipping is requested by setting 
parameter opts.stable=1, which is the default setting) 

0}mr 

 
The pole identification and subsequent residue identification both lead to solving an 
overdetermined problem of the form 
  Ax b  (5.11) 
 
A transformation of variables is used to ensure that complex poles and residues come in 
conjugate pairs. In the actual implementation, the conditioning of A is improved by scaling its 
columns to unit length. The preferred solver is (sparse) QR decomposition with rank revealing 
column pivoting. (vectfit3.m solves the equation using the “\” operator in Matlab). 
 
The initial poles to be specified for the first VF iteration consists of weakly attenuated 
conjugate pairs that are distributed over the frequency band of interest, 
 

 1,n na j a j          (5.12a) 
      (5.12b) 

 
The factor  in (5.9b) is usually taken as 0.01 or smaller.  This choice of initial poles ensures a 
well-conditioned system matrix A in (5.8). 
 
For the fitting of the matrix problem (5.1), the upper triangle of the matrix elements are 
stacked into a single vector and subjected to fitting by VF. This results in a symmetrical, 
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rational model with a common pole set, i.e. a pole-residue model. The details are shown in the 
Closure of [1]. 
 

5.1.3 Relaxed Vector Fitting 

 
Equation (5.9) has been normalized by setting one coefficient to unity. It was found that this 
normalization can seriously impair the pole relocation process when fitting noisy responses. 
This problem was overcome by the relaxed formulation [2] where the fixed coefficient (unity) 
is replaced with an unknown coefficient, 
 

(s) 
 

  
1 1

( ) ( )
N N

m m

m mm m

r r
d h s d se

s a s a 

  
      (5.13) 

As normalization, an additional row is introduced in the least squares (LS) problem (Ns is the 
number of samples). 

 
1 1

Re{ ( )}
Ns N

m
s

k m k m

r
d N

s a 

 
     (5.14) 

This equation is given a LS weighting in relation to the size of h by  

 
2

( ) ( ) / sweight w s h s N   (5.15) 

The new poles are now calculated as 

 1{ } ( )T
ma eig d    A b c  (5.16) 

It is remarked that the new constraint simply imposes that that integral of (s) is non-zero, 
without fixing any coefficients. This gives improved convergence compared to usage of (5.9), 
where (s) is enforced to approach unity at infinite frequency. In particular, the original VF 
formulation is biased to relocating poles from high frequencies towards low frequencies.  
 

5.1.4 Fast implementation 

 
In the pole identification and residue identification steps, the system equation Ax=b is solved 
via QR-decomposition, 

 A QR  (5.17a) 

  (5.17b)  Tx R \ (Q b)

In the case of multi-port systems, the solution of the pole identification step (5.9) or (5.13) can 
be time consuming and memory demanding. This problem is overcome using the fast 
implementation in [3] which recognizes that we only need to calculate the free variables 
associated with . This allows to build a smaller, compact system matrix by exploring the 
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block-structure of the system matrix. Each block is solved for independently via QR-
decomposition, leading to a new system matrix that  has as many columns as there are free 
variables in .  
 
To see this, consider the fitting of two elements. The system matrix for the pole-identification 
step has structure (5.18) and we are only interested in calculating x3.  

  (5.18) 
1

1
2

2 2
3

0

0

 
           

x
A B b

x
A B b

x

1 
 
 

1

We first consider the first equation 

   1
1

3

 
 

 

x
A B b

x
 (5.19) 

Applying QR-decomposition gives 

 
1 1

111 12 1
2

322 1 1
0

T 1
2

     
      

       

xR R b y
Q

xR b y
 (5.20) 

where superscripts 1 and 2 denote upper and lower partition of the vector, respectively. 
 
From this we get  

 2
22 3 1R x y  (5.21) 

Equation (5.21) is built for all equations (block-rows). When fitting a vector of n elements we 
thus get  (5.22). In order to improve the numerical conditioning, the columns of the new 
system matrix are scaled to unit length before solving by (5.17). 
 

 

2
22,1 1

2
22,2 2

3

2
22,n n

  
  
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  
  
    

R y

R y
x

R y

 
 (5.22) 
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5.1.5 Expansion into State Space model 

 
The pole-residue model (5.1) can be directly converted into the form 

  (5.23) 1( )rat s    Y C I A B D sE

}c c

T

The expansion process is straightforward as shown in [9]. A is a diagonal matrix that holds 
the poles {am}, repeated as many times as Y has columns. C holds the elements of the residue 
matrices {Rm}. B is a selector matrix containing ones and zeros that associate each input to a 
separate block (column set) in A and C.  
 
The building of A,B,C is done as shown in Fig. 5.1 for a third-order, two-port case. It is seen 
that C is established by copying the columns of the R-matrices into the appropriate locations 
in C. B is a selector matrix that associated the inputs to blocks (columns) of A and C. It is 
noted that has A is diagonal with the poles repeated as many times as there ports. 
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Fig. 5.1.  Converting (5.1) into a state-space model  
 
The state-space model can be converted into a real-only model (via a similarity 
transformation) as follows [XXX]. 
 

  (5.24) Re{ } Im{ }ˆ ˆ, Re{ } Im{
Im{ } Re{ }

a a

a a

 
   

A c

 
2Re{ } 2ˆ
2 Im{ }

T T

T

   
    
      

b b
b

b 0
 (5.25) 
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5.2 Passivity enforcement by Residue Perturbation (Y-parameters) 

5.2.1 Passivity assessment via Singularity Test Matrix 
 
Frequency bands with passivity violations can easily be detected by computing the 
eigenvalues of Re{Y} as function of frequency. The presence of a negative eigenvalue at any 
frequency point means that the model is non-passive at that frequency. For a symmetrical 
model, this gives the passivity criterion 
 

 
1

(Re{ } ( ( )) 0,
N

m
rat

m m

eig s eig s s
s a

    
 R

D E G   (5.26) 

 
In practice, however, passivity violations are often very local in nature and are easily missed 
out in a sweep over discrete frequencies. In order to pinpoint Fortunately, an algebraic 
criterion exists which allows to precisely detect frequency boundaries of passivity violations.  
 
The first step is to expand the pole-residue model (5.1) into a real-only state-space model 
(5.20)-(5.22). From A,B,C,D, the Singularity Test Matrix S [6] is formed.  

    (5.27) 1(Y
P A BD C A)

PY gives, via the subset of its positive-real eigenvalues 2 the frequencies  where Grat 
becomes singular and these define crossover frequencies where an eigenvalue of Grat changes 
sign [6]. (Note that (5.27) is only applicable for symmetrical models, Y=YT [16]) 

In the case that D is singular, the following transformation of variables is introduced [12] 
before applying (5.27).  

   1 , , ,     A A B AB C CA D D CAB  (5.28) 

With (5.27), the positive-real eigenvalues of PY gives the (squared) inverse crossover 
frequencies –2. 
 
Note that the test matrix PY is only half the size of the Hamiltonian matrix that has 
traditionally been used for passivity assessment. Therefore, usage of PY is about eight times 
faster for large cases, and it more convenient  to apply since the need for eigenvalue 
thresholding is avoided. 
 
In the present work we detect bands of violations via PY as follows: 
 
1. Establish a sorted list of frequencies from the subset of positive real eigenvalues  of PY. 

 1 2{ , , }n  ω   (5.29) 

2. Evaluate the criterion (5.26) at the midpoint between frequencies.  
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 11 2{ , ,
2 2

n ns }
    

   (5.30) 

3. If passivity is violated at the sample (i + i+1)/2 in (5.26), then the band [i i+1] defines 
a band of passivity violation. 

4. In addition, the criterion (5.23) is evaluated at samples 1/2 and 2n to check if passivity 
is violated between 0 and 1, and between n and infinite frequency.     

 

5.2.2 Fast Residue Perturbation (FRP) 
 
As shown in Section 5.1, application of VF to the data leads to a pole-residue model on the 
form  
 

 
1
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m m

s
s a
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 R

Y D E  (5.31) 

 
Matrices {Rm}, D, and E are assumed to be symmetrical.  
 
Using the ideas in [13],[5], passivity is enforced by perturbing the elements of the residue 
matrices, {Rm} and D-matrix. In addition, E is enforced to be positive definite (has positive 
eigenvalues). This leads to the constrained optimization problem  
 

 
1

N
m

m m

s
s a


    

 R
ΔY D E 0  (5.32a) 
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m

m m

eig
s a


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 R
Y D 0  (5.32b) 

 ( )eig   D D 0  (5.32c) 
 ( )eig   E E 0  (5.32d) 

 
The first part (5.32a) minimizes the change to the admittance matrix elements while the 
second part (5.32b) enforces that the perturbed model meets the passivity criterion (5.1). The 
third (5.32c) and fourth (5.32d) parts enforce that D and  E become positive definite, 
 
The implementation of (5.32) leads to the form (5.33) where x holds the perturbed elements 
of {Rm}, D, and E. This problem is solved using Quadratic Programming (QP).  
 

 
1

min ( )
2

T T
sys sys

 
x

x A A x  (5.33a) 

 sys  B x c  (5.33b)  

 
Matrix Asys is block diagonal while Bsys is full but with a few rows.  
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The number of free variables is reduced by individually diagonalizing the residue matrices 
{Rm}and the D and E matrix, and perturbing only their eigenvalues [5], leading to Fast 
Residue Perturbation (RP). First order perturbation of a residue matrix gives 

 
( )

m m

T
mm m

m ms a s a

  


 
R RT TR R m  (5.34) 

 
Thus, 
 1

m m Rm m
 ΔR T Γ T  (5.35a) 

 1
D D D

 ΔD T Γ T  (5.35b) 

 1
E E E

 ΔE T Γ T  (5.35c) 

 
This leads to a full but much smaller Asys (and Bsys) in (5.33). For instance, with n ports and N 
poles, the number of free variables in (5.33) is reduced from M=(n(n+1))N/2 to M=nN (when 
utilizing the symmetry). The solving of (5.33) is done using Quadratic Programming by 
Matlab routine quadprog.m. The reduction of problem size leads to large savings in 

computation time since the complexity of the core operations in QP is O(M 3). In the case of 
complex conjugate residue matrices, the real and imaginary parts are diagonalized separately.  
 
Note: The implementation does not include the modal weighting described in [5]. 

5.2.3 Reducing the number of constraints 

 
Since the computation time needed for the perturbation is strongly dependent on the number 
of constraints (rows in Bsys), we use as few constraints as possible. Violating frequency bands 
that share common border frequencies are joined together into a single band. This is shown in 
Fig. 1 for and example with 3 bands, b1, b2, b5. Within each concatenated band, the 
eigenvalues of Re{Y(s)} are calculated by frequency sweeping while removing any 
“artificial” eigenvalue switchovers by the switching back procedure described in [14]. Within 
each band, the global minimum of all violating eigenvalues are included in the constraint 
equation, as indicated by the two black dots in Fig. 5.1. The passivity enforcement routine 
will then bring the two minima up to the zero line by an amount c1 and c2. Because of the 
linearization between the eigenvalues and the free variables, the value for c1 and c2 is chosen 
slightly higher than the vertical distance to the zero line by an amount tol. This reduces the 
number of iterations needed for removing all passivity violations. 
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Fig. 5.2  Sample selection for passivity enforcement 
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5.2.4 Robust iterations 
 
One problem with perturbation techniques is that passivity enforcement at selected frequency 
samples can result in that new violations arise at other frequencies, and divergence can result. 
In order to tackle this problem, the “robust iterations” [5] is used, see Fig. 5.3  is used. An 
inner loop is introduced where the solution is discarded if new violations are detected,  and 
the problem is solved again with additional constraints added at the new frequencies of 
violating minima. That way, one prevents the new violations from appearing. (Matrices D and 
E are removed from the perturbation process as soon as they become positive definite). 
 

Start 

 
Fig. 5.3  Robust iterations  

{Rm}0, D0, 2=[], 3=[]

• Identify frequency intervals of passivity violations. 
• For each interval and eigenvalue, pick the frequency  
   sample where the violation is maximum and add to 2. 

Perturbation 

{Rm}0, D0, 2, 3

{Rm}1, D1

• For new model ({Rm}1, D1), identify frequency  
  intervals of passivity violations. 
• For each interval and eigenvalue, pick the frequency  
  sample where the violation is maximum and add to 3. 
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n.o. inner iterations? 
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No 

No 
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{Rm}1, D1, 2=[], 3=[]

{Rm}0, D0, 2, 3 

Any violations? Stop 

Yes 
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5.3 Passivity enforcement by Residue Perturbation (S-parameters) 
 
The implemented passivity enforcement scheme for S-parameter models is similar to that for 
Y-parameters. The following explains the main differences.  
 

5.3.1 Passivity assessment 

 
The passivity assessment is now done using the test matrix [7] 

    (5.36) 1( ( ) )( ( )S
    P A B D I C A B D I C1 )

 
PS gives, via the subset of its negative-real eigenvalues –2 , the crossover frequencies j 
where the singular values of S are unity. In the case that (D+I) or (D–I) is singular, the 
transformation (5.28) is applied [].  
 

5.3.2 Passivity enforcement 

 
The constraint matrix is obtained by expressing the singular values of S as the eigenvalues of 
the augmented matrix H (5.37) which leads to the augmented problem (5.38).  

 0
0

H    
SH

S
 (5.37) 

1 H


 
00

00
                

V V V V ΣS
U U U U ΣS

 (5.38)  

Inverting the left factor in (5.38) gives (5.39), and retaining the partition associated with  
gives (5.40), which in compact form is written as (5.41). Finally, the relation between 
perturbed singular values of S and the elements of H (5.37) becomes as shown in (5.42). See 
[8] for the full details. 
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